Edge covering pseudo-outerplanar graphs with forests

被引:19
作者
Zhang, Xin [1 ,2 ]
Liu, Guizhen [1 ]
Wu, Jian-Liang [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Xidian Univ, Dept Math, Xian 710071, Peoples R China
关键词
Pseudo-outerplanar graphs; Edge decomposition; Edge chromatic number; Linear arboricity; PLANAR GRAPHS; LINEAR ARBORICITY;
D O I
10.1016/j.disc.2012.05.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is pseudo-outerplanar if each block has an embedding on the plane in such a way that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. In this paper, we prove that each pseudo-outerplanar graph admits edge decompositions into a linear forest and an outerplanar graph, or a star forest and an outerplanar graph, or two forests and a matching, or max {Delta(G), 4} matchings, or max{inverted right perpendicular Delta(G)/2 inverted left perpendicular, 3} linear forests. These results generalize known results on outerplanar graphs and K-2,K-3-minor-free graphs, since the class of pseudo-outerplanar graphs is larger than the class of K-2,K-3-minor-free graphs. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2788 / 2799
页数:12
相关论文
共 16 条
  • [1] Akiyama J., 1980, Mathematica Slovaca, V30, P405
  • [2] Covering planar graphs with forests
    Balogh, J
    Kochol, M
    Pluhár, A
    Yu, XX
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 147 - 158
  • [3] Bondy J. A., 1976, Graph theory with applications
  • [4] A Planar linear arboricity conjecture
    Cygan, Marek
    Hou, Jian-Feng
    Kowalik, Lukasz
    Luzar, Borut
    Wu, Jian-Liang
    [J]. JOURNAL OF GRAPH THEORY, 2012, 69 (04) : 403 - 425
  • [5] Covering planar graphs with forests, one having bounded maximum degree
    Goncalves, D.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 314 - 322
  • [6] COVERING AND PACKING IN GRAPHS, .1.
    HARARY, F
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) : 198 - &
  • [7] Harary F., 1969, Graph Theory
  • [8] Hetherington TJ, 2006, ELECTRON J COMB, V13
  • [9] Juvan M., 1999, Electron. J. Combin, V6, pR42, DOI [10.37236/1474, DOI 10.37236/1474]
  • [10] Ringel G., 1965, Abh. Math. Sem. Univ Hamb, V29, P107, DOI [10.1007/BF02996313, DOI 10.1007/BF02996313]