Fine-grained pornographic image recognition with multiple feature fusion transfer learning

被引:16
|
作者
Lin, Xinnan [1 ]
Qin, Feiwei [1 ]
Peng, Yong [1 ]
Shao, Yanli [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Pornographic image recognition; Image classification; Multiple feature fusion; Transfer learning; INTERNET PORNOGRAPHY; NEURAL-NETWORKS; IMPACT;
D O I
10.1007/s13042-020-01157-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image has become a main medium of Internet information dissemination, makes it easy for an Internet visitor to get pornographic images with just few clicks on websites. It is necessary to build pornographic image recognition systems since uncontrolled spreading of adult content could be harm to the adolescents. Previous solutions for pornographic image recognition are usually based on hand-crafted features like human skin color. Hand-crafted feature based methods are straightforward to understand and use but limited in specific situations. In this paper, we propose a deep learning based approach with multiple feature fusion transfer learning strategy. Firstly, we obtain the training data from an open data set called NSFW with 120,000+ images. Images would be classified into different levels according to its content sensitivity. Then we employ data augment methods, train a deep convolutional neural network to extract image features and conduct the classification job, without the need for hand-crafted rules. A pre-trained model is used to initialize the network and help extract the basic features. Furthermore, we propose a fusion method that makes use of multiple transfer learning models in inference, to improve the accuracy on the test set. The experimental results prove that our method achieves high accuracy on the pornographic image recognition and inspection task.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 50 条
  • [21] Attention cutting and padding learning for fine-grained image recognition
    Cheng, Zhuo
    Li, Hongjian
    Duan, Xiaolin
    Zeng, Xiangyan
    He, Mingxuan
    Luo, Hao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 32791 - 32805
  • [22] LEARNING DEEP AND SPARSE FEATURE REPRESENTATION FOR FINE-GRAINED OBJECT RECOGNITION
    Srinivas, M.
    Lin, Yen-Yu
    Liao, Hong-Yuan Mark
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1458 - 1463
  • [23] Multilayer feature descriptors fusion CNN models for fine-grained visual recognition
    Hou, Yong
    Luo, Hangzai
    Zhao, Wanqing
    Zhang, Xiang
    Wang, Jun
    Peng, Jinye
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2019, 30 (3-4)
  • [24] A NOVEL PART FEATURE INTEGRATION AND FUSION METHOD FOR FINE-GRAINED VEHICLE RECOGNITION
    Wang, Ping
    Cao, Yijie
    Lu, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1990 - 1994
  • [25] Multilayer feature fusion with parallel convolutional block for fine-grained image classification
    Wang, Lei
    He, Kai
    Feng, Xu
    Ma, Xitao
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2872 - 2883
  • [26] Multilayer feature fusion with parallel convolutional block for fine-grained image classification
    Lei Wang
    Kai He
    Xu Feng
    Xitao Ma
    Applied Intelligence, 2022, 52 : 2872 - 2883
  • [27] Fine-Grained Image Classification Based on Multi-Scale Feature Fusion
    Li Siyao
    Liu Yuhong
    Zhang Rongfen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [28] Weighted Multi-feature Fusion Algorithm for Fine-Grained Image Retrieval
    Wang, Zhihui
    Wang, Shijie
    Wang, Hong
    Li, Haojie
    Li, Chengming
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 630 - 640
  • [29] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [30] Fine-Grained Image Recognition of Wild Mushroom Based on Multiscale Feature Guide
    Zhang Zhigang
    Yu Pengfei
    Li Haiyan
    Li Hongsong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)