Hydrogen sorption in MgH2-based composites: The role of Ni and LiBH4 additives

被引:26
作者
Cova, Federico
Arneodo Larochette, Pierre
Gennari, Fabiana [1 ]
机构
[1] Consejo Nacl Invest Cient & Tecn CONICET, San Carlos De Bariloche, Argentina
关键词
Hydrogen storage; Composite powders; Mechanical milling; Catalyst; MAGNESIUM HYDRIDE; STORAGE PROPERTIES; DESORPTION; MGH2; KINETICS; MG2NIH4;
D O I
10.1016/j.ijhydene.2012.07.132
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work we investigate the hydrogen sorption properties of composites in the MgH2-Ni, MgH2-Ni-LiH and MgH2-Ni-LiBH4 systems and analyze why Ni addition improve hydrogen sorption rates while LiBH4 enhance the hydrogen storage capacity. Although all composites with Ni addition showed significantly improved hydrogen storage kinetics compared with the pure MgH2, the fastest hydrogen sorption kinetics is obtained for Ni-doped MgH2. The formation of Mg2Ni/Mg2NiH4 in Ni-doped MgH2 composite and its microstructure allows to uptake 5.0 wt% of hydrogen in 25 s and to release it in 8 mm at 275 degrees C. In the MgH2-Ni-LiBH4 composite, decomposition of LiBH4 occurs during the first dehydriding leading to the formation of diborane, which has a Ni catalyst poison effect via the formation of a passivating boron layer. A combination of FTIR, XRD and volumetric measurements demonstrate that the formation of MgNi3B2 in the MgH2-Ni-LiBH4 composite happens in the subsequent hydriding cycle from the reaction between Mg2Ni/Mg2NiH4 and B. Activation energy analysis demonstrates that the presence of Ni particles has a catalytic effect in MgH2-Ni and MgH2-Ni-LiH systems, but it is practically nullified by the addition of LiBH4. The beneficial role of LiBH4 on the hydrogen storage capacity of the MgH2-Ni-LiBH4 composite is discussed. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15210 / 15219
页数:10
相关论文
共 30 条
[1]   The influence of SWCNT-metallic nanoparticle mixtures on the desorption properties of milled MgH2 powders [J].
Amirkhiz, Babak Shalchi ;
Danaie, Mohsen ;
Mitlin, David .
NANOTECHNOLOGY, 2009, 20 (20)
[2]  
[Anonymous], 2008, Hydrogen as a Future Energy Carrier
[3]   POLYMORPHISM OF MAGNESIUM HYDRIDE AT HIGH-PRESSURE [J].
BASTIDE, JP ;
BONNETOT, B ;
LETOFFE, JM ;
CLAUDY, P .
MATERIALS RESEARCH BULLETIN, 1980, 15 (12) :1779-1787
[4]   Role of additives in LiBH4-MgH2 reactive hydride composites for sorption kinetics [J].
Boesenberg, U. ;
Kim, J. W. ;
Gosslar, D. ;
Eigen, N. ;
Jensen, T. R. ;
von Colbe, J. M. Bellosta ;
Zhou, Y. ;
Dahms, M. ;
Kim, D. H. ;
Guenther, R. ;
Cho, Y. W. ;
Oh, K. H. ;
Klassen, T. ;
Bormann, R. ;
Dornheim, M. .
ACTA MATERIALIA, 2010, 58 (09) :3381-3389
[5]   Influence of phase composition of Mg2NiH4 upon the hydrogen desorption kinetics [J].
Cermak, J. ;
David, B. .
SCRIPTA MATERIALIA, 2008, 59 (04) :432-435
[6]   Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen desorption from MgH2 [J].
Cermak, Jiri ;
David, Bohumil .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (21) :13614-13620
[7]   Role of Li2B12H12 for the Formation and Decomposition of LiBH4 [J].
Friedrichs, O. ;
Remhof, A. ;
Hwang, S. -J. ;
Zuettel, A. .
CHEMISTRY OF MATERIALS, 2010, 22 (10) :3265-3268
[8]   Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying [J].
Gennari, FC ;
Castro, FJ ;
Urretavizcaya, G .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 321 (01) :46-53
[9]   Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen [J].
Grochala, W ;
Edwards, PP .
CHEMICAL REVIEWS, 2004, 104 (03) :1283-1315
[10]   Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling [J].
Hanada, N ;
Ichikawa, T ;
Fujii, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7188-7194