Total flavonoids in Premna fulva Craib alleviates brain neurological impairment and influences Nrf2 and HO-1 expressions in rats with ischemia-reperfusion

被引:7
|
作者
Qin, Hui [1 ]
Fu, Youxue [1 ]
Jiang, Ying [1 ]
Tian, Zhao [2 ]
Zhang, Yongquan [1 ]
Tan, Wenlan [1 ]
Liang, Mingkun [1 ]
Wen, Haicheng [3 ]
Fang, Gang [4 ]
机构
[1] Guangxi Univ Tradit Chinese Med, Rui Kang Hosp, Dept Neurosurg, Nanning 530011, Guangxi, Peoples R China
[2] GuangXi Univ Chinese Med, Dept Neurol, Nanning 530001, Guangxi, Peoples R China
[3] Guangxi Univ Chinese Med, Zhuang Med Coll, Dept Neurol, Nanning 530001, Guangxi, Peoples R China
[4] GuangXi Univ Chinese Med, Guangxi Key Lab Appl Fundamental Res Zhuang Med, Nanning 530001, Guangxi, Peoples R China
关键词
Total flavonoids in Premna fulva Craib; Ischemia-Reperfusion; nuclear factor E2-related factor 2; Heme oxygenase 1; OXIDATIVE STRESS; IN-VITRO; STROKE; INFLAMMATION; PARAMETERS; MODULATION; MECHANISMS; PROTECTS; NEURONS; OXYGEN;
D O I
10.14715/cmb/2022.68.6.25
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Total flavonoids in Premna fulva Craib (TFPFC) are a kind of flavonoid compound synthesized via photosynthesis extracted from Premna fulva Craib, which possess a strong anti-oxidative effect. Cerebral Ischemia-Reperfusion refers to the body's damage mainly caused by oxidative stress. This study aims to investigate the alleviating effect of TFPFC on brain neurological impairment and its influences on Nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expressions in rats with Ischemia-Reperfusion. The rat model of Ischemia-Reperfusion was established, and rats were treated with TFPFC or normal saline. At 24 h after reperfusion, the neurological score, volume of cerebral infarction and cerebral water content were analyzed in different groups. The influences of TFPFC treatment on the proliferative activity and apoptosis of oxygen and glucose deprivation/reoxygenation (OGD/R) neural stem cells were detected via methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. Moreover, the malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured to evaluate the oxidative stress effect. The influences of TFPFC treatment on the protein and messenger ribonucleic acid (mRNA) expressions of Nrf2 and HO-1 were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The TFPFC treatment alleviated the neurological impairment in rats after Ischemia-Reperfusion and reduced the volume of cerebral infarction and cerebral edema status in rats with Ischemia-Reperfusion. TFPFC increased the proliferative activity of OGD/R neural stem cells and decreased damage and apoptosis. In addition, the TFPFC treatment reduced the MDA level, improved the SOD activity, and up-regulated the protein and mRNA expressions of Nrf2 and HO-1. The TFPFC treatment may improve oxidative damage and protect the nervous system through the up-regulation of expressions of transcription factors Nrf2 and HO-1. Copyright: (c) 2022 by the C.M.B. Association. All rights reserved.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [1] Ulinastatin alleviates cerebral ischemia-reperfusion injury in rats by activating the Nrf-2/HO-1 signaling pathway
    Cui, Lei
    Cao, Wei
    Xia, Yanmin
    Li, Xiaofang
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (18)
  • [2] JuA alleviates liver ischemia-reperfusion injury by activating AKT/NRF2/ HO-1 pathways
    Fang, Haoran
    Xu, Min
    Zhang, Jiakai
    Qin, Hong
    Tang, Hongwei
    He, Yuting
    Guo, Wenzhi
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2024, 1870 (08):
  • [3] Albiflorin relieves cerebral ischemia-reperfusion injury by activating Nrf2/HO-1 pathway
    Zhu, Fei
    Xiong, Jianzhong
    Yi, Fei
    Luo, Ermin
    Huang, Chun
    Li, Runying
    HISTOLOGY AND HISTOPATHOLOGY, 2023, 38 (02) : 233 - 245
  • [4] Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury
    Ge, Mian
    Yao, Weifeng
    Yuan, Dongdong
    Zhou, Shaoli
    Chen, Xi
    Zhang, Yihan
    Li, Haobo
    Xia, Zhengyuan
    Hei, Ziqing
    CELL DEATH & DISEASE, 2017, 8 : e2841 - e2841
  • [5] β-Caryophyllene Attenuates Focal Cerebral Ischemia-Reperfusion Injury by Nrf2/HO-1 Pathway in Rats
    Lou, Jie
    Cao, Guangxiu
    Li, Ranran
    Liu, Jie
    Dong, Zhi
    Xu, Lu
    NEUROCHEMICAL RESEARCH, 2016, 41 (06) : 1291 - 1304
  • [6] Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway
    Ge, Hanwei
    Lin, Wei
    Lou, Zhiling
    Chen, Ruiheng
    Shi, Haochun
    Zhao, Qifeng
    Lin, Zhiyong
    MICROVASCULAR RESEARCH, 2022, 140
  • [7] Effects of icariside II on brain tissue oxidative stress and Nrf2/HO-1 expression in rats with cerebral ischemia-reperfusion injury
    Li, Yan
    Meng, Fanjun
    ACTA CIRURGICA BRASILEIRA, 2019, 34 (02)
  • [8] Nicotinamide adenine dinucleotide phosphate alleviates intestinal ischemia/reperfusion injury via Nrf2/HO-1 pathway
    Chen, Su-ying
    Xu, Hui
    Qin, Yan
    He, Tian-qi
    Shi, Rui-rui
    Xing, Yu-run
    Xu, Jian
    Cong, Ruo-chen
    Wang, Mei-rong
    Yang, Ju-shun
    Gu, Jin-hua
    He, Bo-sheng
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 143
  • [9] Calcitriol ameliorates brain injury in the rat model of cerebral ischemia-reperfusion through Nrf2/HO-1 signalling axis: An in silico and in vivo study
    Vahidinia, Zeinab
    Khassafi, Negar
    Tameh, Abolfazl Azami
    Karimian, Mohammad
    Zare-Dehghanani, Zahra
    Moradi, Fatemeh
    Joghataei, Mohammad Taghi
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2022, 31 (06)
  • [10] Roles of the Nrf2/HO-1 pathway in the anti-oxidative stress response to ischemia-reperfusion brain injury in rats
    Jiang, L. -J.
    Zhang, S. -M.
    Li, C. -W.
    Tang, J. -Y.
    Che, F. -Y.
    Lu, Y. -C.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2017, 21 (07) : 1532 - 1540