Bounds for the (Laplacian) spectral radius of graphs with parameter α

被引:2
|
作者
Tian, Gui-Xian [1 ]
Huang, Ting-Zhu [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; adjacency matrix; Laplacian matrix; spectral radius; bound; ENERGY; EIGENVALUE; CONJECTURES;
D O I
10.1007/s10587-012-0030-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph of order n with degree sequence (d (1), d (2), aEuro broken vertical bar, d (n) ). Denote ( (alpha) t) (i) = I pound (j: i similar to j) d (j) (alpha) , ( (alpha) m) (i) = ( (alpha) t) (i) /d (i) (alpha) and ( (alpha) N) (i) = I pound (j: i similar to j) ( (alpha) t) (j) , where alpha is a real number. Denote by lambda(1)(G) and A mu(1)(G) the spectral radius of the adjacency matrix and the Laplacian matrix of G, respectively. In this paper, we present some upper and lower bounds of lambda(1)(G) and A mu(1)(G) in terms of ( (alpha) t) (i) , ( (alpha) m) (i) and ( (alpha) N) (i) . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 50 条
  • [41] BOUNDS FOR THE SKEW LAPLACIAN (SKEW ADJACENCY) SPECTRAL RADIUS OF A DIGRAPH
    Ganie, Hilal A.
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) : 1 - 12
  • [42] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [43] Upper bounds of spectral radius of symmetric matrices and graphs
    Jin, Ya-Lei
    Zhang, Jie
    Zhang, Xiao-Dong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 152 - 163
  • [44] The new upper bounds on the spectral radius of weighted graphs
    Sorgun, Sezer
    Buyukkose, Serife
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5231 - 5238
  • [45] Some sharp upper bounds on the spectral radius of graphs
    Feng, Lihua
    Li, Qiao
    Zhang, Xiao-Dong
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 989 - 997
  • [46] Sharp bounds for spectral radius of Dα-matrix of graphs
    Ganie, Hilal A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (08)
  • [47] Extremal graph characterization from the bounds of the spectral radius of weighted graphs
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7420 - 7426
  • [48] The vertex bipartiteness and the Laplacian spectral radius of graphs
    Jia, Huicai
    Xue, Jie
    ARS COMBINATORIA, 2020, 151 : 57 - 62
  • [49] Graphs with maximal signless Laplacian spectral radius
    Chang, Ting-Jung
    Tam, Bit-Shun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1708 - 1733
  • [50] The signless Laplacian spectral radius of graphs on surfaces
    Feng, Lihua
    Yu, Guihai
    Ilic, Aleksandar
    Stevanovic, Dragan
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05) : 573 - 581