Bounds for the (Laplacian) spectral radius of graphs with parameter α

被引:2
|
作者
Tian, Gui-Xian [1 ]
Huang, Ting-Zhu [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; adjacency matrix; Laplacian matrix; spectral radius; bound; ENERGY; EIGENVALUE; CONJECTURES;
D O I
10.1007/s10587-012-0030-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph of order n with degree sequence (d (1), d (2), aEuro broken vertical bar, d (n) ). Denote ( (alpha) t) (i) = I pound (j: i similar to j) d (j) (alpha) , ( (alpha) m) (i) = ( (alpha) t) (i) /d (i) (alpha) and ( (alpha) N) (i) = I pound (j: i similar to j) ( (alpha) t) (j) , where alpha is a real number. Denote by lambda(1)(G) and A mu(1)(G) the spectral radius of the adjacency matrix and the Laplacian matrix of G, respectively. In this paper, we present some upper and lower bounds of lambda(1)(G) and A mu(1)(G) in terms of ( (alpha) t) (i) , ( (alpha) m) (i) and ( (alpha) N) (i) . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 50 条
  • [31] New upper bounds on the spectral radius of unicyclic graphs
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 754 - 764
  • [32] Bounds for the spectral radius of the Aa-matrix of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01) : 298 - 309
  • [33] On the signless Laplacian index and radius of graphs
    Liu, Huiqing
    Lu, Mei
    Zhang, Shunzhe
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 327 - 342
  • [34] Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph
    Maden, A. Dilek
    Das, Kinkar Ch.
    Cevik, A. Sinan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5025 - 5032
  • [35] Some lower bounds on the spectral radius of graphs
    Xu Yang
    Jiang Weixin
    Chen Cang
    ARS COMBINATORIA, 2007, 84 : 281 - 292
  • [36] New Upper Bounds on the Spectral Radius of Graphs
    Kargar, M.
    Sistani, T.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 53 - 66
  • [37] The Randic index and signless Laplacian spectral radius of graphs
    Ning, Bo
    Peng, Xing
    DISCRETE MATHEMATICS, 2019, 342 (03) : 643 - 653
  • [38] The Signless Laplacian Spectral Radius of Graphs with Given Number of Pendant Vertices
    Fan, Yi-Zheng
    Yang, Dan
    GRAPHS AND COMBINATORICS, 2009, 25 (03) : 291 - 298
  • [39] An improved upper bound for the Laplacian spectral radius of graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6318 - 6321
  • [40] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687