共 50 条
Bounds for the (Laplacian) spectral radius of graphs with parameter α
被引:2
|作者:
Tian, Gui-Xian
[1
]
Huang, Ting-Zhu
[2
]
机构:
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金:
中国国家自然科学基金;
关键词:
graph;
adjacency matrix;
Laplacian matrix;
spectral radius;
bound;
ENERGY;
EIGENVALUE;
CONJECTURES;
D O I:
10.1007/s10587-012-0030-9
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a simple connected graph of order n with degree sequence (d (1), d (2), aEuro broken vertical bar, d (n) ). Denote ( (alpha) t) (i) = I pound (j: i similar to j) d (j) (alpha) , ( (alpha) m) (i) = ( (alpha) t) (i) /d (i) (alpha) and ( (alpha) N) (i) = I pound (j: i similar to j) ( (alpha) t) (j) , where alpha is a real number. Denote by lambda(1)(G) and A mu(1)(G) the spectral radius of the adjacency matrix and the Laplacian matrix of G, respectively. In this paper, we present some upper and lower bounds of lambda(1)(G) and A mu(1)(G) in terms of ( (alpha) t) (i) , ( (alpha) m) (i) and ( (alpha) N) (i) . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
引用
收藏
页码:567 / 580
页数:14
相关论文