Optimal Lehmer Mean Bounds for the Toader Mean

被引:111
作者
Chu, Yu-Ming [1 ]
Wang, Miao-Kun [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lehmer mean; Toader mean; power mean; INEQUALITIES; HOLDER;
D O I
10.1007/s00025-010-0090-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the greatest value p and least value q such that the double inequality L (p) (a, b) < T(a, b) < L (q) (a, b) holds for all a, b > 0 with a not equal b, and give a new upper bound for the complete elliptic integral of the second kind. Here and L (p) (a, b) = (a (p+1) + b (p+1))/(a (p) + b (p) ) denote the Toader and p-th Lehmer means of two positive numbers a and b, respectively.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 12 条
[1]   Monotonicity theorems and inequalities for the complete elliptic integrals\ [J].
Alzer, H ;
Qiu, SL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :289-312
[2]  
Alzer H., 1993, ZB RAD PRIR MAT FAK, V23, P331
[3]  
ALZER H., 1988, Elem. Math., V43, P50
[4]  
Anderson GD, 1997, CONFORMAL INVARINANT
[5]  
Costin I, 2005, AUTOMAT COMPUT APPL, V14, P111
[6]   Remark on inequalities between Holder and Lehmer means [J].
Liu, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (01) :309-313
[7]  
Qiu S-L., 1997, J. Hangzhou Inst. Electr. Eng, V17, P1, DOI DOI 10.13954/J.CNKI.HDU.1997.03.001
[8]   Holder means, Lehmer means, and x(-1) log cosh x [J].
Stolarsky, KB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (03) :810-818
[9]   Some mean values related to the arithmetic-geometric mean [J].
Toader, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (02) :358-368
[10]  
Toader S., 2006, AUTOMAT COMPUT APPL, V15, P315