Consistency of choice in nonparametric multiple comparisons

被引:5
作者
Fey, Mark [1 ]
Clarke, Kevin A. [1 ]
机构
[1] Univ Rochester, Dept Polit Sci, Rochester, NY 14627 USA
关键词
distribution free; Arrow's theorem; cycling; irrelevant alternatives; DISTRIBUTION-FREE STATISTICS; SIGN TEST; TESTS; PARADOXES; THEOREMS; DESIGNS; TABLES;
D O I
10.1080/10485252.2012.675436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we are interested in the inconsistencies that can arise in the context of rank-based multiple comparisons. It is well known that these inconsistencies exist, but we prove that every possible distributionfree rank-based multiple comparison procedure with certain reasonable properties is susceptible to these phenomena. The proof is based on a generalisation of Arrow's theorem, a fundamental result in social choice theory which states that when faced with three or more alternatives, it is impossible to rationally aggregate preference rankings subject to certain desirable properties. Applying this theorem to treatment rankings, we generalise a number of existing results in the literature and demonstrate that procedures that use rank sums cannot be improved. Finally, we show that the best possible procedures are based on the Friedman rank statistic and the k-sample sign statistic, in that these statistics minimise the potential for paradoxical results.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 50 条
  • [1] Nonparametric multiple comparisons
    Noguchi, Kimihiro
    Abel, Riley S.
    Marmolejo-Ramos, Fernando
    Konietschke, Frank
    BEHAVIOR RESEARCH METHODS, 2020, 52 (02) : 489 - 502
  • [2] Nonparametric Predictive Multiple Comparisons of Lifetime Data
    Coolen-Maturi, Tahani
    Coolen-Schrijner, Pauline
    Coolen, Frank P. A.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (22) : 4164 - 4181
  • [3] Nonparametric multiple comparisons with more than one control
    Solorzano, E
    Spurrier, JD
    JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (03) : 397 - 412
  • [4] A Nonparametric Approach to Estimate Classification Accuracy and Consistency
    Lathrop, Quinn N.
    Cheng, Ying
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2014, 51 (03) : 318 - 334
  • [5] Seeking consistency with paired comparisons: a systems approach
    Donald G. Saari
    Theory and Decision, 2021, 91 : 377 - 402
  • [6] Nonparametric monitoring of multiple count data
    Qiu, Peihua
    He, Zhen
    Wang, Zhiqiong
    IISE TRANSACTIONS, 2019, 51 (09) : 972 - 984
  • [7] ON USING THE BOOTSTRAP FOR MULTIPLE COMPARISONS
    Westfall, Peter H.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1187 - 1205
  • [8] An Updated Recommendation for Multiple Comparisons
    Sauder, Derek C.
    DeMars, Christine E.
    ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2019, 2 (01) : 26 - 44
  • [9] Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data
    Bouzebda, Salim
    Nezzal, Amel
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (02) : 431 - 533
  • [10] Nonparametric regression with multiple thresholds: Estimation and inference
    Chiou, Yan-Yu
    Chen, Mei-Yuan
    Chen, Jau-er
    JOURNAL OF ECONOMETRICS, 2018, 206 (02) : 472 - 514