Improving comparability of hydrogen storage capacities of nanoporous materials

被引:22
作者
Hruzewicz-Kolodziejczyk, Anna [1 ]
Ting, Valeska P. [1 ]
Bimbo, Nuno [1 ]
Mays, Timothy J. [1 ]
机构
[1] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Physisorption; Nanoporous materials; Hydrogen storage; METAL-ORGANIC FRAMEWORKS; HIGH-PRESSURE; SURFACE-AREA; PORE-SIZE; ADSORPTION; POROSITY; DESIGN; HEAT;
D O I
10.1016/j.ijhydene.2011.03.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present results of investigations into improving methods by which gas sorption data are collected and reported. The focus is the accurate comparison of hydrogen storage capacities of different nanoporous materials. The aim is to produce a more rigorous approach to the assessment of the hydrogen storage capacities of different nanoporous materials through formulation of meticulous and systematic data collection routines for production of universally reproducible H-2 isotherms over a wide range of pressure and temperature conditions. Effects of a range of experimental variables are examined and recommendations for the optimisation of data collection routines are given. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2728 / 2736
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 1997, APPL NOTE 105 HELIUM
[2]  
[Anonymous], 2010, BET SPECIFIC SURFACE
[3]  
[Anonymous], NIST CHEM WEBB
[4]  
[Anonymous], 2005, APPL NOTE 136 USING
[5]  
[Anonymous], EXPLANATIONS FREEDOM
[6]  
[Anonymous], 2003, APPL NOTE 104 DETERM
[7]   Potential importance of hydrogen as a future solution to environmental and transportation problems [J].
Balat, Mustafa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (15) :4013-4029
[8]  
Bimbo N, 2011, FARADAY DIS IN PRESS, P151
[9]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[10]  
*BRIT STAND I, 1996, 43591 BS BRIT STAND