Transverse magneto-optical Kerr effect at narrow optical resonances

被引:19
作者
Borovkova, Olga, V [1 ]
Spitzer, Felix [2 ]
Belotelov, Vladimir, I [1 ,4 ]
Akimov, Ilya A. [2 ,3 ]
Poddubny, Alexander N. [3 ]
Karczewski, Grzegorz [5 ]
Wiater, Maciej [5 ]
Wojtowicz, Tomasz [6 ]
Zvezdin, Anatoly K. [1 ,7 ]
Yakovlev, Dmitri R. [2 ,3 ]
Bayer, Manfred [2 ,3 ]
机构
[1] Russian Quantum Ctr, Skolkovo 143025, Moscow Region, Russia
[2] Tech Univ Dortmund, Expt Phys 2, D-44221 Dortmund, Germany
[3] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[4] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[5] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[6] Polish Acad Sci, Int Res Ctr MagTop, Inst Phys, PL-02668 Warsaw, Poland
[7] RAS, Prokhorov Gen Phys Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Nanophotonics; semiconductor nanostructures; excitons; magneto-optics; magneto-optical Kerr effects; WAVE-GUIDE; EMISSION;
D O I
10.1515/nanoph-2018-0187
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigating magnetically-ordered media. Previous studies were limited to the weak coupling regime where the spectral width of optical transitions considerably exceeded the Zeeman splitting in magnetic field. Here, we investigate experimentally and theoretically the transverse Kerr effect in the vicinity of comparatively narrow optical resonances in confined quantum systems. For experimental demonstration we studied the ground-state exciton resonance in a (Cd,Mn)Te diluted magnetic semiconductor quantum well, for which the strong exchange interaction with magnetic ions leads to giant Zeeman splitting of exciton spin states. For low magnetic fields in the weak coupling regime, the Kerr effect magnitude grows linearly with increasing Zeeman splitting showing a dispersive S-shaped spectrum, which remains almost unchanged in this range. For large magnetic fields in the strong coupling regime, the magnitude saturates, whereas the spectrum becomes strongly modified by the appearance of two separate peaks. TMOKE is sensitive not only to the sample surface but can also be used to probe in detail the confined electronic states in buried nanostructures if their capping layer is sufficiently transparent.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 39 条
  • [11] Digonnet M J, 2001, Rare-earth-doped fiber lasers and amplifiers
  • [12] Dyakonov M. I., 2017, Spin physics in semiconductors
  • [13] Determination of interface preference by observation of linear-to-circular polarization conversion under optical orientation of excitons in type-II GaAs/AlAs superlattices
    Dzhioev, RI
    Gibbs, HM
    Ivchenko, EL
    Khitrova, G
    Korenev, VL
    Tkachuk, MN
    Zakharchenya, BP
    [J]. PHYSICAL REVIEW B, 1997, 56 (20): : 13405 - 13413
  • [14] Magneto-optical and magnetoplasmonic properties of epitaxial and polycrystalline Au/Fe/Au trilayers
    Ferreiro-Vila, E.
    Iglesias, M.
    Paz, E.
    Palomares, F. J.
    Cebollada, F.
    Gonzalez, J. M.
    Armelles, G.
    Garcia-Martin, J. M.
    Cebollada, A.
    [J]. PHYSICAL REVIEW B, 2011, 83 (20)
  • [15] GEOMETRICAL REPRESENTATION OF THE SCHRODINGER EQUATION FOR SOLVING MASER PROBLEMS
    FEYNMAN, RP
    VERNON, FL
    HELLWARTH, RW
    [J]. JOURNAL OF APPLIED PHYSICS, 1957, 28 (01) : 49 - 52
  • [16] Magnetic circular dichroism of resonant X-ray emission spectra at L edges of rare-earth compounds
    Fukui, K
    Ogasawara, H
    Harada, I
    Kotani, A
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 (02) : 407 - 409
  • [17] DILUTED MAGNETIC SEMICONDUCTORS
    FURDYNA, JK
    [J]. JOURNAL OF APPLIED PHYSICS, 1988, 64 (04) : R29 - R64
  • [18] Gaj J, SOLID STATE COMMUN
  • [19] Hubert A, 1998, Magnetic domains: The analysis of magnetic microstructure
  • [20] Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications
    Ignatyeva, Daria O.
    Knyazev, Grigory A.
    Kapralov, Pavel O.
    Dietler, Giovanni
    Sekatskii, Sergey K.
    Belotelov, Vladimir I.
    [J]. SCIENTIFIC REPORTS, 2016, 6