Epitaxial Growth of Honeycomb Monolayer CuSe with Dirac Nodal Line Fermions

被引:139
作者
Gao, Lei [1 ,2 ]
Sun, Jia-Tao [1 ,2 ]
Lu, Jian-Chen [1 ,2 ]
Li, Hang [1 ,2 ]
Qian, Kai [1 ,2 ]
Zhang, Shuai [1 ,2 ]
Zhang, Yu-Yang [1 ,2 ]
Qian, Tian [1 ,2 ]
Ding, Hong [1 ,2 ]
Lin, Xiao [1 ,2 ]
Du, Shixuan [1 ,2 ]
Gao, Hong-Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
2D Dirac nodal line fermion; first-principles calculation; monolayer CuSe; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GRAPHENE; TRANSITION; MOS2;
D O I
10.1002/adma.201707055
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D transition metal chalcogenides have attracted tremendous attention due to their novel properties and potential applications. Although 2D transition metal dichalcogenides are easily fabricated due to their layer-stacked bulk phase, 2D transition metal monochalcogenides are difficult to obtain. Recently, a single atomic layer transition metal monochalcogenide (CuSe) with an intrinsic pattern of nanoscale triangular holes is fabricated on Cu(111). The first-principles calculations show that free-standing monolayer CuSe with holes is not stable, while hole-free CuSe is endowed with the Dirac nodal line fermion (DNLF), protected by mirror reflection symmetry. This very rare DNLF state is evidenced by topologically nontrivial edge states situated inside the spin-orbit coupling gaps. Motivated by the promising properties of hole-free honeycomb CuSe, monolayer CuSe is fabricated on Cu(111) surfaces by molecular beam epitaxy and confirmed success with high resolution scanning tunneling microscopy. The good agreement of angle resolved photoemission spectra with the calculated band structures of CuSe/Cu(111) demonstrates that the sample is monolayer CuSe with a honeycomb lattice. These results suggest that the honeycomb monolayer transition metal monochalcogenide can be a new platform to study 2D DNLFs.
引用
收藏
页数:7
相关论文
共 44 条
  • [11] Magnetic Dirac fermions and Chern insulator supported on pristine silicon surface
    Fu, Huixia
    Liu, Zheng
    Lian, Chao
    Zhang, Jin
    Li, Hui
    Sun, Jia-Tao
    Meng, Sheng
    [J]. PHYSICAL REVIEW B, 2016, 94 (03)
  • [12] Van der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for Ultrasensitive Near-Infrared Phototransistors
    Fu, Lei
    Wang, Feng
    Wu, Bin
    Wu, Nian
    Huang, Wei
    Wang, Hanlin
    Jin, Chuanhong
    Zhuang, Lin
    He, Jun
    Fu, Lei
    Liu, Yunqi
    [J]. ADVANCED MATERIALS, 2017, 29 (32)
  • [13] Van der Waals Force Isolation of Monolayer MoS2
    Gurarslan, Alper
    Jiao, Shuping
    Li, Tai-De
    Li, Guoqing
    Yu, Yiling
    Gao, Yang
    Riedo, Elisa
    Xu, Zhiping
    Cao, Linyou
    [J]. ADVANCED MATERIALS, 2016, 28 (45) : 10055 - 10060
  • [14] WSXM:: A software for scanning probe microscopy and a tool for nanotechnology
    Horcas, I.
    Fernandez, R.
    Gomez-Rodriguez, J. M.
    Colchero, J.
    Gomez-Herrero, J.
    Baro, A. M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
  • [15] A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
    Huang, Shin-Ming
    Xu, Su-Yang
    Belopolski, Ilya
    Lee, Chi-Cheng
    Chang, Guoqing
    Wang, BaoKai
    Alidoust, Nasser
    Bian, Guang
    Neupane, Madhab
    Zhang, Chenglong
    Jia, Shuang
    Bansil, Arun
    Lin, Hsin
    Hasan, M. Zahid
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [16] Keum DH, 2015, NAT PHYS, V11, P482, DOI [10.1038/nphys3314, 10.1038/NPHYS3314]
  • [17] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [18] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50
  • [19] Photosensitive Graphene Transistors
    Li, Jinhua
    Niu, Liyong
    Zheng, Zijian
    Yan, Feng
    [J]. ADVANCED MATERIALS, 2014, 26 (31) : 5239 - 5273
  • [20] Lin X, 2017, NAT MATER, V16, P717, DOI [10.1038/nmat4915, 10.1038/NMAT4915]