BLOCK PRECONDITIONERS FOR COUPLED PHYSICS PROBLEMS

被引:14
作者
Howle, Victoria E. [1 ]
Kirby, Robert C. [2 ]
Dillon, Geoffrey [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
block preconditioners; finite element; bidomain equations; Benard convection; NAVIER-STOKES EQUATIONS; FLOW;
D O I
10.1137/120883086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element discretizations of multiphysics problems frequently give rise to block-structured linear algebra problems that require effective preconditioners. We build two classes of preconditioners in the spirit of well-known block factorizations [M. F. Murphy, G. H. Golub, and A. J. Wathen, SIAM J. Sci. Comput., 21 (2000), pp. 1969-1972; I. C. F. Ipsen, SIAM J. Sci. Comput., 23 (2001), pp. 1050-1051] and apply these to the diffusive portion of the bidomain equations and the Benard convection problem. An abstract generalized eigenvalue problem allows us to give application-specific bounds for the real parts of eigenvalues for these two problems. This analysis is accompanied by numerical calculations with several interesting features. One of our preconditioners for the bidomain equations converges in five iterations for a range of problem sizes. For Benard convection, we observe mesh-independent convergence with reasonable robustness with respect to physical parameters, and offer some preliminary parallel scaling results on a multicore processor via message passing interface (MPI).
引用
收藏
页码:S368 / S385
页数:18
相关论文
共 24 条
  • [1] [Anonymous], 2004, SAND20043796 SAND NA
  • [2] [Anonymous], 2006, Technical report SAND2006-2649
  • [3] [Anonymous], 1995, P 9 INT C FINITE ELE
  • [4] Mesh adaptation for Dirichlet flow control via Nitsche's method
    Becker, R
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (09): : 669 - 680
  • [5] Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
  • [6] Brenner S.C., 2008, MATH THEORY FINITE E, V15
  • [7] CAREY G. F., 1986, TEXAS FINITE ELEMENT, VVI
  • [8] Block preconditioners based on approximate commutators
    Elman, H
    Howle, VE
    Shadid, J
    Shuttleworth, R
    Tuminaro, R
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (05) : 1651 - 1668
  • [9] Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations
    Elman, H
    Silvester, D
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) : 33 - 46
  • [10] Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations
    Elman, Howard
    Howle, Victoria E.
    Shadid, John
    Silvester, David
    Tuminaro, Ray
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) : 290 - 311