Inverse spectral problems for differential operators with non-separated boundary conditions

被引:8
作者
Yurko, V. A. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Math, Astrakhanskaya 83, Saratov 410012, Russia
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2020年 / 28卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
Differential operators; non-separated boundary conditions; inverse spectral problems; STURM-LIOUVILLE OPERATOR;
D O I
10.1515/jiip-2019-0044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a short review of results on inverse spectral problems for second-order differential operators on an interval with non-separated boundary conditions. We pay the main attention to the most important nonlinear inverse problems of recovering coefficients of differential operators from given spectral characteristics. In the first part of the review, we provide the main results and methods related to inverse problems for Sturm-Liouville operators with non-separated boundary conditions: periodic, quasi-periodic and Robin-type boundary conditions. At the end, we present the main results on inverse problems for differential pencils with non-separated boundary conditions.
引用
收藏
页码:567 / 616
页数:50
相关论文
共 49 条
[1]  
[Anonymous], 1975, Math USSR Sb.
[2]   On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval [J].
Buterin, S. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :739-749
[3]  
Buterin S. A., 2006, VESTNIK BASHKIR U, P1
[4]   Inverse problems for second-order differential pencils with Dirichlet boundary conditions [J].
Buterin, Sergey A. ;
Yurko, Vjacheslav A. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (5-6) :855-881
[5]  
Collatz L., 1963, EIGENWERTAUFGABEN TE
[6]   Recovering nonselfadjoint differential pencils with nonseparated boundary conditions [J].
Freiling, G. ;
Yurko, V. .
APPLICABLE ANALYSIS, 2015, 94 (08) :1649-1661
[7]   On the solvability of an inverse problem in the central symmetric case [J].
Freiling, G. ;
Yurko, V. A. .
APPLICABLE ANALYSIS, 2011, 90 (12) :1819-1828
[8]  
Freiling G., 2001, Inverse Sturm-Liouville problems and their applications
[9]  
Gasymov M. G., 1990, SIB MAT ZH, V31, P46
[10]  
GASYMOV MG, 1990, SIBERIAN MATH J+, V31, P910