Understanding Robust Corrections in Structural Equation Modeling

被引:138
作者
Savalei, Victoria [1 ]
机构
[1] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada
关键词
nonnormal data; robust standard errors; Satorra-Bentler scaled chi-square; COVARIANCE STRUCTURE-ANALYSIS; MISSING-DATA; TEST STATISTICS; ESTIMATORS; VARIABLES; SEM; ML;
D O I
10.1080/10705511.2013.824793
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Robust corrections to standard errors and test statistics have wide applications in structural equation modeling (SEM). The original SEM development, due to Satorra and Bentler (1988, 1994), was to account for the effect of nonnormality. Muthen (1993) proposed corrections to accompany certain categorical data estimators, such as cat-LS or cat-DWLS. Other applications of robust corrections exist. Despite the diversity of applications, all robust corrections are constructed using the same underlying rationale: They correct for inefficiency of the chosen estimator. The goal of this article is to make the formulas behind all types of robust corrections more intuitive. This is accomplished by building an analogy with similar equations in linear regression and then by reformulating the SEM model as a nonlinear regression model.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [41] Structural equation modeling: Strengths, limitations, and misconceptions
    Tomarken, Andrew J.
    Waller, Niels G.
    ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, 2005, 1 : 31 - 65
  • [42] Structural equation modeling of adolescents' life satisfaction
    Kozeny, J.
    Csemy, L.
    Tisanska, L.
    CESKOSLOVENSKA PSYCHOLOGIE, 2007, 51 (03): : 224 - 237
  • [43] A Penalized Likelihood Method for Structural Equation Modeling
    Huang, Po-Hsien
    Chen, Hung
    Weng, Li-Jen
    PSYCHOMETRIKA, 2017, 82 (02) : 329 - 354
  • [44] Assessing Model Similarity in Structural Equation Modeling
    Lai, Keke
    Green, Samuel B.
    Levy, Roy
    Reichenberg, Ray E.
    Xu, Yuning
    Thompson, Marilyn S.
    Yel, Nedim
    Eggum-Wilkens, Natalie D.
    Kunze, Katie L.
    Iida, Masumi
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (04) : 491 - 506
  • [45] Learning through online peer discourse: Structural equation modeling points to the role of discourse activities in individual understanding
    Paus, Elisabeth
    Werner, Christina S.
    Jucks, Regina
    COMPUTERS & EDUCATION, 2012, 58 (04) : 1127 - 1137
  • [46] Meta-Analytic Structural Equation Modeling With Moderating Effects on SEM Parameters
    Jak, Suzanne
    Cheung, Mike W-L
    PSYCHOLOGICAL METHODS, 2020, 25 (04) : 430 - 455
  • [47] Effects of Missing Data Methods in Structural Equation Modeling With Nonnormal Longitudinal Data
    Shin, Tacksoo
    Davison, Mark L.
    Long, Jeffrey D.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2009, 16 (01) : 70 - 98
  • [48] Level-Specific Evaluation of Model Fit in Multilevel Structural Equation Modeling
    Ryu, Ehri
    West, Stephen G.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2009, 16 (04) : 583 - 601
  • [49] Structural Equation Modeling With Unknown Population Distributions: Ridge Generalized Least Squares
    Yuan, Ke-Hai
    Chan, Wai
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (02) : 163 - 179
  • [50] Modeling motor connectivity using TMS/PET and structural equation modeling
    Laird, Angela R.
    Robbins, Jacob M.
    Li, Karl
    Price, Larry R.
    Cykowski, Matthew D.
    Narayana, Shalini
    Laird, Robert W.
    Franklin, Crystal
    Fox, Peter T.
    NEUROIMAGE, 2008, 41 (02) : 424 - 436