Numerical model for polymer electrolyte membrane fuel cells with experimental application and validation

被引:1
|
作者
Mora, Javier Alonso
Husar, Attila P.
Serra, Maria
Riera, Jordi
机构
[1] Institute of Robotics and Industrial Informatics, Barcelona IRI (CSIC-UPC)
关键词
numerical modeling; PEM fuel cell; temperature distribution; pressure drop; parameter identification; experimental validation; TEMPERATURE; TRANSPORT; WATER;
D O I
10.1002/apj.195
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The aim of this paper is to present a simple 3D computational model of a polymer electrolyte membrane fuel cell (PEMFC) that simulates over time the heat distribution, energy, and mass balance of the reactant gas flows in the fuel cell including pressure drop, humidity, and liquid water. Although this theoretical model can be adapted to any type of PEMFC, for verification of the model and to present different analysis it has been adapted to a single cell test fixture. The model parameters were adjusted through a series of experimental tests and the model was experimentally validated for a well-defined range of operating conditions: H-2/air O-2 as reactants, flow rates of 0.5 -1.5 SLPM, dew points and cell temperatures of 30-80 degrees C, currents 0-5 A and with/without water condensation. The model is especially suited for the analysis of liquid water condensation in the reactant channels. A key finding is that the critical current at which liquid water is formed is determined at different flows. temperatures, and humidity. (C) 2009 Curtin University of Technology and John Wiley & Sons, Ltd.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [21] Polymer Electrolyte Membrane Fuel Cells: Characterization and Diagnostics
    Dhanushkodi, S. R.
    Schwager, M.
    Merida, W.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 547 - 557
  • [22] In situ diagnostics for polymer electrolyte membrane fuel cells
    Hinds, Gareth
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 5 (01) : 11 - 19
  • [23] A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeability
    Baek, Seung Man
    Koh, Soo Gon
    Kim, Kwang Nam
    Kang, Jung Ho
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (02) : 457 - 467
  • [24] The Effect of Membrane Properties on Performance and Transports inside Polymer Electrolyte Membrane Fuel Cells
    Shimpalee, S.
    Lilavivat, V
    Xu, H.
    Rowlett, J. R.
    Mittelsteadt, C.
    Van Zee, J. W.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) : F1019 - F1026
  • [25] An experimentally validated heat transfer model for thermal management design in polymer electrolyte membrane fuel cells
    Matian, M.
    Marquis, A.
    Brett, D.
    Brandon, N.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2010, 224 (A8) : 1069 - 1081
  • [26] Experimental and numerical modeling study of the electrical resistance of gas diffusion layer-less polymer electrolyte membrane fuel cells
    Tanaka, Shiro
    Shudo, Toshio
    JOURNAL OF POWER SOURCES, 2015, 278 : 382 - 395
  • [27] Numerical simulation of the polymer electrolyte membrane fuel cells with intermediate blocked interdigitated flow fields
    Bagherighajari, Fatemeh
    Ramiar, Abbas
    Abdollahzadehsangroudi, Mohammadmahdi
    Pascoa, Jose Carlos
    Oliveira, Paulo J.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (11) : 15309 - 15331
  • [28] Optimisation and characterisation of graphenebased microporous layers for polymer electrolyte membrane fuel cells
    Lee, F. C.
    Ismail, M. S.
    Zhang, K.
    Ingham, D. B.
    Aldakheel, F.
    Hughes, K. J.
    Ma, L.
    El-Kharouf, A.
    Pourkashanian, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1311 - 1325
  • [29] Numerical study of gas purge in polymer electrolyte membrane fuel cell
    Ding, Jing
    Mu, Yu-Tong
    Zhai, Shuang
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 744 - 752
  • [30] An effective mesh strategy for CFD modelling of polymer electrolyte membrane fuel cells
    Choopanya, P.
    Yang, Z.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (15) : 6445 - 6456