How to achieve high electrical conductivity in aligned carbon nanotube polymer composites

被引:28
作者
Souier, Tewfik [1 ]
Maragliano, Carlo [1 ]
Stefancich, Marco [1 ]
Chiesa, Matteo [1 ]
机构
[1] Masdar Inst Sci & Technol, Lab Energy & Nanosci, Abu Dhabi, U Arab Emirates
关键词
NANOCOMPOSITES; CONDUCTANCE;
D O I
10.1016/j.carbon.2013.07.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotube reinforced polymer composites may provide a unique option for the aviation industry due to their high strength-to-weight ratio and multifunctionality. Specifically their electrical conductivity and consequent shielding capabilities can be strongly enhanced by featuring vertically aligned nanotube arrays in the polymer composites. We report here a detailed study of the electrical transport mechanisms within aligned carbon nanotube reinforced polymer composites. The experimental part of our investigation relies on extensive use of both macroscopic and high spatial resolution experimental techniques by which we shed light on the factors dominating the electrical transport, namely the contact resistance which depends on the wetting properties of CNT-metal interface, and the resistance at point-junctions which scale with the size of interconnecting tubes. Our modeling effort well describes our experimental observations and reveals the key parameters to achieve high nanocomposite intrinsic electrical conductivity and to reduce its interfacial contact resistance. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 36 条
  • [11] Current-voltage relation for thin tunnel barriers: Parabolic barrier model
    Hansen, K
    Brandbyge, M
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 95 (07) : 3582 - 3586
  • [12] Aligned multiwalled carbon nanotube membranes
    Hinds, BJ
    Chopra, N
    Rantell, T
    Andrews, R
    Gavalas, V
    Bachas, LG
    [J]. SCIENCE, 2004, 303 (5654) : 62 - 65
  • [13] The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites
    Huang, Yi
    Li, Ning
    Ma, Yanfeng
    Feng, Du
    Li, Feifei
    He, Xiaobo
    Lin, Xiao
    Gao, Hongjun
    Chen, Yongsheng
    [J]. CARBON, 2007, 45 (08) : 1614 - 1621
  • [14] Johnson K. L., 1987, CONTACT MECH
  • [15] Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films
    Kilbride, BE
    Coleman, JN
    Fraysse, J
    Fournet, P
    Cadek, M
    Drury, A
    Hutzler, S
    Roth, S
    Blau, WJ
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) : 4024 - 4030
  • [16] Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes
    Kim, Yeon-Yi
    Yun, Jumi
    Kim, Hyung-Il
    Lee, Young-Seak
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (01) : 392 - 398
  • [17] Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature
    Li, C. C.
    Du, Z. F.
    Li, L. M.
    Yu, H. C.
    Wan, Q.
    Wang, T. H.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (03)
  • [18] Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites with High Packing Density
    Marconnett, Amy M.
    Yamamoto, Namiko
    Panzer, Matthew A.
    Wardle, Brian L.
    Goodson, Kenneth E.
    [J]. ACS NANO, 2011, 5 (06) : 4818 - 4825
  • [19] Polyethylene multiwalled carbon nanotube composites
    McNally, T
    Pötschke, P
    Halley, P
    Murphy, M
    Martin, D
    Bell, SEJ
    Brennan, GP
    Bein, D
    Lemoine, P
    Quinn, JP
    [J]. POLYMER, 2005, 46 (19) : 8222 - 8232
  • [20] Megalini L., 2009, Journal of Nano Systems and Technology, V1, P1