On Levi extensions of nilpotent Lie algebras

被引:4
作者
Benito, Pilar [1 ]
de-la-Concepcion, Daniel [1 ]
机构
[1] Univ La Rioja, Dpto Matemat & Computac, Logrono 26004, Spain
关键词
Lie algebra; Levi factor; Nilpotent algebra; Free nilpotent algebra; Representation; CLASSIFICATION;
D O I
10.1016/j.laa.2013.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levi's theorem decomposes any arbitrary Lie algebra over a field of characteristic zero, as a direct sum of a semisimple Lie algebra (named Levi factor) and its solvable radical. Given a solvable Lie algebra R, a semisimple Lie algebras is said to be a Levi extension of R in case a Lie structure can be defined on the vector spaces S circle plus R. The assertion is equivalent to rho (S) subset of Der (R), where Der (R) is the derivation algebra of R, for some representation rho of S onto R. Our goal in this paper, is to present some general structure results on nilpotent Lie algebras admitting Levi extensions based on free nilpotent lie algebras and modules of semisimple Lie algebras. In low nilpotent index a complete classification will be given. The results are based on linear algebra methods and leads to computational algorithms. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1441 / 1457
页数:17
相关论文
共 50 条
[41]   Explicit Betti numbers for a family of nilpotent Lie algebras [J].
Armstrong, GF ;
Cairns, G ;
Jessup, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (02) :381-385
[42]   Ado theorem for nilpotent Hom-Lie algebras [J].
Makhlouf, Abdenacer ;
Zusmanovich, Pasha .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (07) :1343-1365
[43]   On action of outer derivations on nilpotent ideals of Lie algebras [J].
Maksimenko, Dmitriy V. .
ALGEBRA & DISCRETE MATHEMATICS, 2009, (01) :74-82
[44]   Totally Geodesic Subalgebras of Filiform Nilpotent Lie Algebras [J].
Cairns, Grant ;
Galic, Ana Hinic ;
Nikolayevsky, Yuri .
JOURNAL OF LIE THEORY, 2013, 23 (04) :1051-1074
[45]   ON THE DIMENSION OF A SPECIAL SUBALGEBRA OF DERIVATIONS OF NILPOTENT LIE ALGEBRAS [J].
Sheikh-Mohseni, S. ;
Saeedi, F. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (01) :79-93
[46]   Extensions of n-Hom Lie algebras [J].
Ruipu Bai ;
Ying Li .
Frontiers of Mathematics in China, 2015, 10 :511-522
[47]   Extensions of the conformal representations for orthogonal Lie algebras [J].
Xu, Xiaoping ;
Zhao, Yufeng .
JOURNAL OF ALGEBRA, 2013, 377 :97-124
[48]   Extensions of n-Hom Lie algebras [J].
Bai, Ruipu ;
Li, Ying .
FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) :511-522
[49]   The action of a compact Lie group on nilpotent Lie algebras of type {n, 2} [J].
Falcone, Giovanni ;
Figula, Agota .
FORUM MATHEMATICUM, 2016, 28 (04) :795-806
[50]   Minimal algebras and 2-step nilpotent Lie algebras in dimension 7 [J].
Bazzoni, Giovanni .
GEOMETRIAE DEDICATA, 2013, 165 (01) :111-133