On Levi extensions of nilpotent Lie algebras

被引:4
|
作者
Benito, Pilar [1 ]
de-la-Concepcion, Daniel [1 ]
机构
[1] Univ La Rioja, Dpto Matemat & Computac, Logrono 26004, Spain
关键词
Lie algebra; Levi factor; Nilpotent algebra; Free nilpotent algebra; Representation; CLASSIFICATION;
D O I
10.1016/j.laa.2013.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levi's theorem decomposes any arbitrary Lie algebra over a field of characteristic zero, as a direct sum of a semisimple Lie algebra (named Levi factor) and its solvable radical. Given a solvable Lie algebra R, a semisimple Lie algebras is said to be a Levi extension of R in case a Lie structure can be defined on the vector spaces S circle plus R. The assertion is equivalent to rho (S) subset of Der (R), where Der (R) is the derivation algebra of R, for some representation rho of S onto R. Our goal in this paper, is to present some general structure results on nilpotent Lie algebras admitting Levi extensions based on free nilpotent lie algebras and modules of semisimple Lie algebras. In low nilpotent index a complete classification will be given. The results are based on linear algebra methods and leads to computational algorithms. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1441 / 1457
页数:17
相关论文
共 50 条
  • [1] On extensions of free nilpotent Lie algebras of type 2
    Benito, Pilar
    de-la-Concepcion, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 363 - 382
  • [2] On nilpotent extensions of Lie algebras
    Yankosky, B
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (04): : 719 - 724
  • [3] Geometry of Central Extensions of Nilpotent Lie Algebras
    Millionshchikov, D. V.
    Jimenez, R.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (01) : 209 - 231
  • [4] SOLVABLE INDECOMPOSABLE EXTENSIONS OF TWO NILPOTENT LIE ALGEBRAS
    Shabanskaya, A.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3626 - 3667
  • [5] An overview of free nilpotent Lie algebras
    Benito, Pilar
    de-la-Concepcion, Daniel
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2014, 55 (03): : 325 - 339
  • [6] On nilpotent Lie algebras of small breadth
    Khuhirun, Borworn
    Misra, Kailash C.
    Stitzinger, Ernie
    JOURNAL OF ALGEBRA, 2015, 444 : 328 - 338
  • [7] On nilpotent Lie algebras of derivations of fraction fields
    Petravchuk, A. P.
    ALGEBRA & DISCRETE MATHEMATICS, 2016, 22 (01): : 116 - 128
  • [8] Local derivations and automorphisms of nilpotent Lie algebras
    Khudoyberdiyev, Abror
    Jumaniyozov, Doston
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1921 - 1933
  • [9] Degenerations of binary Lie and nilpotent Malcev algebras
    Kaygorodov, Ivan
    Popov, Yury
    Volkov, Yury
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (11) : 4928 - 4940
  • [10] NILPOTENT DECOMPOSITION OF SOLVABLE LIE ALGEBRAS
    Qi, Liqun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 1041 - 1054