On Levi extensions of nilpotent Lie algebras

被引:4
作者
Benito, Pilar [1 ]
de-la-Concepcion, Daniel [1 ]
机构
[1] Univ La Rioja, Dpto Matemat & Computac, Logrono 26004, Spain
关键词
Lie algebra; Levi factor; Nilpotent algebra; Free nilpotent algebra; Representation; CLASSIFICATION;
D O I
10.1016/j.laa.2013.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levi's theorem decomposes any arbitrary Lie algebra over a field of characteristic zero, as a direct sum of a semisimple Lie algebra (named Levi factor) and its solvable radical. Given a solvable Lie algebra R, a semisimple Lie algebras is said to be a Levi extension of R in case a Lie structure can be defined on the vector spaces S circle plus R. The assertion is equivalent to rho (S) subset of Der (R), where Der (R) is the derivation algebra of R, for some representation rho of S onto R. Our goal in this paper, is to present some general structure results on nilpotent Lie algebras admitting Levi extensions based on free nilpotent lie algebras and modules of semisimple Lie algebras. In low nilpotent index a complete classification will be given. The results are based on linear algebra methods and leads to computational algorithms. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1441 / 1457
页数:17
相关论文
共 20 条
[1]  
Ancochea-Berumdez J.M., 2006, INT MATH FORUM, V1, P309, DOI DOI 10.12988/IMF.2006.06028
[2]  
BENITO MP, 1994, MATH APPL, V303, P24
[3]  
Benito P., 2012, TIBILISI MATH J, V5, P3
[4]  
Dixmer J., 1957, P AM MATH SOC, V8, P155
[5]  
Dixmier Jacques., 1977, ENVELOPING ALGEBRAS, V11
[6]   CLASSIFICATION OF METABELIAN LIE-ALGEBRAS [J].
GAUGER, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :293-329
[7]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R, V9
[8]  
Jacobson N., 1979, Lie Algebras
[9]   Some complete Lie algebras [J].
Jiang, CP ;
Meng, DJ ;
Zhang, SQ .
JOURNAL OF ALGEBRA, 1996, 186 (03) :807-817
[10]   CHARACTERISTICALLY NILPOTENT LIE ALGEBRAS [J].
LEGER, G ;
TOGO, S .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) :623-628