A Jacobi matrix inverse eigenvalue problem with mixed data

被引:12
作者
Wei, Ying [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
Jacobi matrix; Eigenvalue; Inverse problem; Submatrix; ALGORITHM;
D O I
10.1016/j.laa.2013.07.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the inverse eigenvalue problem of reconstructing a Jacobi matrix from part of its eigenvalues and its leading principal submatrix is considered. The necessary and sufficient conditions for the existence and uniqueness of the solution are derived. Furthermore, a numerical algorithm and some numerical examples are given. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:2774 / 2783
页数:10
相关论文
共 12 条
[1]   A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS [J].
BOLEY, D ;
GOLUB, GH .
INVERSE PROBLEMS, 1987, 3 (04) :595-622
[2]  
Chu MT, 2002, ACT NUMERIC, V11, P1, DOI 10.1017/S0962492902000014
[3]  
Gladwell G. M. L., 2004, Inverse Problems in Vibration
[4]  
Gladwell G.M. L., 1986, INVERSE PROBLEMS VIB
[5]   INVERSE EIGENVALUE PROBLEMS FOR JACOBI MATRICES [J].
HALD, OH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 14 (01) :63-85
[6]   CONSTRUCTION OF A JACOBI MATRIX FROM MIXED GIVEN DATA [J].
HOCHSTADT, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 28 (DEC) :113-115
[7]  
Liang HX, 2007, J COMPUT MATH, V25, P620
[8]   Inverse eigenvalue problem: existence of special spring-mass systems [J].
Nylen, P ;
Uhlig, F .
INVERSE PROBLEMS, 1997, 13 (04) :1071-1081
[9]   A divide and conquer algorithm on the double dimensional inverse eigenvalue problem for Jacobi matrices [J].
Wu, Xiaoqian .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) :3840-3846
[10]   A new algorithm on the inverse eigenvalue problem for double dimensional Jacobi matrices [J].
Wu, Xiaoqian ;
Jiang, Erxiong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) :1760-1770