Cryo-EM structure of the exocyst complex

被引:105
作者
Mei, Kunrong [1 ]
Li, Yan [2 ,3 ,4 ,5 ]
Wang, Shaoxiao [1 ]
Shao, Guangcan [6 ]
Wang, Jia [2 ,3 ,4 ,5 ]
Ding, Yuehe [6 ]
Luo, Guangzuo [1 ]
Yue, Peng [1 ]
Liu, Jun-Jie [2 ,3 ,4 ,7 ]
Wang, Xinquan [2 ,3 ,4 ]
Dong, Meng-Qiu [6 ]
Wang, Hong-Wei [2 ,3 ,4 ,5 ]
Guo, Wei [1 ]
机构
[1] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[2] Tsinghua Univ, Key Lab Prot Sci, Minist Educ, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Beijing, Peoples R China
[4] Tsinghua Univ, Sch Life Sci, Beijing, Peoples R China
[5] Tsinghua Peking Joint Ctr Life Sci, Beijing, Peoples R China
[6] Natl Inst Biol Sci, Beijing, Peoples R China
[7] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA USA
基金
美国国家科学基金会;
关键词
ANISOTROPIC MAGNIFICATION DISTORTION; BEAM-INDUCED MOTION; CRYSTAL-STRUCTURE; TETHERING COMPLEXES; PROTEIN COMPLEXES; PLASMA-MEMBRANE; SUBUNIT; EXOCYTOSIS; ARCHITECTURE; SEC3P;
D O I
10.1038/s41594-017-0016-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many cellular processes such as cell polarization, cytokinesis, ciliogenesis and tumor invasion. Using cryo-EM and chemical cross-linking MS (CXMS), we solved the structure of the Saccharomyces cerevisiae exocyst complex at an average resolution of 4.4 angstrom. Our model revealed the architecture of the exocyst and led to the identification of the helical bundles that mediate the assembly of the complex at its core. Sequence analysis suggests that these regions are evolutionarily conserved across eukaryotic systems. Additional cell biological data suggest a mechanism for exocyst assembly that leads to vesicle tethering at the plasma membrane.
引用
收藏
页码:139 / +
页数:10
相关论文
共 74 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] Structure-Function Study of the N-terminal Domain of Exocyst Subunit Sec3
    Baek, Kyuwon
    Knoedler, Andreas
    Lee, Sung Haeng
    Zhang, Xiaoyu
    Orlando, Kelly
    Zhang, Jian
    Foskett, Trevor J.
    Guo, Wei
    Dominguez, Roberto
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (14) : 10424 - 10433
  • [3] SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
    Biasini, Marco
    Bienert, Stefan
    Waterhouse, Andrew
    Arnold, Konstantin
    Studer, Gabriel
    Schmidt, Tobias
    Kiefer, Florian
    Cassarino, Tiziano Gallo
    Bertoni, Martino
    Bordoli, Lorenza
    Schwede, Torsten
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) : W252 - W258
  • [4] Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p
    Boyd, C
    Hughes, T
    Pypaert, M
    Novick, P
    [J]. JOURNAL OF CELL BIOLOGY, 2004, 167 (05) : 889 - 901
  • [5] Multisubunit Tethering Complexes and Their Role in Membrane Fusion
    Broecker, Cornelia
    Engelbrecht-Vandre, Siegfried
    Ungermann, Christian
    [J]. CURRENT BIOLOGY, 2010, 20 (21) : R943 - R952
  • [6] Crystal structure of Sec10, a subunit of the exocyst complex
    Chen, Jianxing
    Yamagata, Atsushi
    Kubota, Keiko
    Sato, Yusuke
    Goto-Ito, Sakurako
    Fukai, Shuya
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21
  • [8] CATCHR, HOPS and CORVET tethering complexes share a similar architecture
    Chou, Hui-Ting
    Dukovski, Danijela
    Chambers, Melissa G.
    Reinisch, Karin M.
    Walz, Thomas
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2016, 23 (08) : 761 - +
  • [9] Conservation of Helical Bundle Structure between the Exocyst Subunits
    Croteau, Nicole J.
    Furgason, Melonnie L. M.
    Devos, Damien
    Munson, Mary
    [J]. PLOS ONE, 2009, 4 (02):
  • [10] Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links
    Ding, Yue-He
    Gong, Zhou
    Dong, Xu
    Liu, Kan
    Liu, Zhu
    Liu, Chao
    He, Si-Min
    Dong, Meng-Qiu
    Tang, Chun
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (04) : 1187 - 1196