Diagrammatics of braided group gauge theory

被引:6
作者
Majid, S [1 ]
机构
[1] Harvard Univ, Dept Math, Ctr Sci, Cambridge, MA 02138 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
noncommutative geometry; braided groups; gauge theory; principal bundles; connections; fiber bundle; anyonic symmetry;
D O I
10.1142/S021821659900047X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a gauge theory or theory of bundles and connections on them at the level of braids and tangles. Extending recent algebraic work, we provide now a fully diagrammatic treatment of principal bundles, a theory of global gauge transformations, associated braided fiber bundles and covariant derivatives on them. We describe the local structure for a concrete Z(3)-graded or 'anyonic' realization of the theory.
引用
收藏
页码:731 / 771
页数:41
相关论文
共 27 条
[1]  
Brzezinski T., 1996, Journal of Geometry and Physics, V20, P349, DOI 10.1016/S0393-0440(96)00003-4
[2]   Coalgebra bundles [J].
Brzezinski, T ;
Majid, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :467-492
[3]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[4]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[5]   Crossed products by a coalgebra [J].
Brzezinski, T .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (11) :3551-3575
[6]  
DOI Y, 1989, COMMUN ALGEBRA, V17, P3053, DOI 10.1080/00927878908823895
[7]  
Drinfeld V.G., 1987, P INT C MATH BERK 19, V1, P798
[8]   Strong connections on quantum principal bundles [J].
Hajac, PM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (03) :579-617
[9]  
JOYAL A, 1986, 86008 MACQ U
[10]   QUANTUM AND BRAIDED LINEAR ALGEBRA [J].
MAJID, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (03) :1176-1196