Properties of the sign gradient descent algorithms

被引:15
作者
Moulay, Emmanuel [1 ]
Lechappe, Vincent [2 ]
Plestan, Franck [3 ]
机构
[1] Univ Poitiers, XLIM, CNRS, UMR 7252, 11 Bd Marie & Pierre Curie, F-86073 Poitiers 9, France
[2] INSA Lyon, Lab Ampere, CNRS, UMR 5005, 20 Ave Albert Einstein, F-69100 Villeurbanne, France
[3] Ecole Cent Nantes LS2N, CNRS, UMR 6004, 1 Rue Noe, F-44321 Nantes 3, France
关键词
Gradient descent; Discrete-time systems; Optimization; Metaheuristic; Lyapunov sequence; SLIDING-MODE CONTROL; STABILITY; SEARCH;
D O I
10.1016/j.ins.2019.04.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this article is to study the properties of the sign gradient descent algorithms involving the sign of the gradient instead of the gradient itself and first introduced in the RPROP algorithm. This article provides two results of convergence for local optimization, a first one for nominal systems without uncertainty and a second one for systems with uncertainties. New sign gradient descent algorithms including the dichotomy algorithm DICHO are applied on several examples to show their effectiveness in terms of speed of convergence. As a novelty, the sign gradient descent algorithms can allow to converge in practice towards other minima than the closest minimum of the initial condition making these algorithms suitable for global optimization as a new metaheuristic method. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [31] A block-based gradient descent search algorithm for block motion estimation in video coding
    Liu, LK
    Feig, E
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1996, 6 (04) : 419 - 422
  • [32] THE PARALLEL GENETIC ALGORITHM AS FUNCTION OPTIMIZER
    MUHLENBEIN, H
    SCHOMISCH, M
    BORN, J
    [J]. PARALLEL COMPUTING, 1991, 17 (6-7) : 619 - 632
  • [33] Nesterov Y., 2003, Introductory Lectures on Convex Optimization: A Basic Course, V87
  • [34] Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5
  • [35] Pascanu R., 2013, INT C MACH LEARN JML, P1310
  • [36] New methodologies for adaptive sliding mode control
    Plestan, F.
    Shtessel, Y.
    Bregeault, V.
    Poznyak, A.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (09) : 1907 - 1919
  • [37] Robust output feedback sampling control based on second-order sliding mode
    Plestan, Franck
    Moulay, Emmanuel
    Glumineau, Alain
    Cheviron, Thibault
    [J]. AUTOMATICA, 2010, 46 (06) : 1096 - 1100
  • [38] Ratliff N, 2009, IEEE INT CONF ROBOT, P4030
  • [39] Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method
    Richter, Stefan
    Jones, Colin Neil
    Morari, Manfred
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) : 1391 - 1403
  • [40] RIEDMILLER M, 1993, 1993 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, P586, DOI 10.1109/ICNN.1993.298623