A FAST DETERMINISTIC MODEL TO STUDY ADHESION IN ROUGH CONTACTS

被引:0
|
作者
Medina, Simon [1 ]
Dini, Daniele [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
来源
PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, VOL 4 | 2012年
关键词
SURFACE-ENERGY; ELASTIC SOLIDS; SPHERES; FORCES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As two bodies come into contact, attractive forces occur wherever a gap exists between the two surfaces. The forces are significant at distances of atomic order but become negligible at much larger separations. Their effect is insignificant in most situations for which engineers wish to understand the state of the contact since the adhesive forces are usually much smaller than the net load applied and/or surface roughness results in non-contacting areas being far enough apart that the attractive force is negligible. There are, however, certain cases in which adhesion forces do contribute to the contact mechanics and must be accounted for in any valid analysis. Materials with low elastic modulus, such as rubber, may deform sufficiently around surface asperities such that the surface separation is small and adhesion is apparent. A model for arbitrary geometry (with surface roughness) that includes adhesive forces is reported here. It is based upon the multi-level method of contact analysis developed by Venner and Lubrecht [1]. Adhesion has been implemented using the Lennard-Jones potential as applied to two parallel surfaces, adding the requirement of specific negative pressures for the separated surface nodes [2]. The model is then compared to theoretical and numerical analysis of smooth spherical contacts and to rough contacts of different scales and material properties.
引用
收藏
页码:637 / 643
页数:7
相关论文
共 50 条
  • [31] Analytical stresses in rough contacts
    Sainsot, P.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2011, 225 (C2) : 274 - 279
  • [32] Deformation of rough line contacts
    Department of Mechanical Engineering, Tribology Group, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
    J. Tribol., 3 (449-454):
  • [33] ADHESION OF PARTICLES ON A ROUGH SURFACE - ADHESION OF CYLINDRICAL PARTICLES ON A ROUGH SURFACE
    ZIMON, AD
    SEREBRYA.GA
    KOLLOIDNYI ZHURNAL, 1973, 35 (01): : 26 - 33
  • [34] Rate-dependent adhesion of viscoelastic contacts, Part I: Contact area and contact line velocity within model randomly rough surfaces
    Violano, G.
    Chateauminois, A.
    Afferrante, L.
    MECHANICS OF MATERIALS, 2021, 160
  • [35] Adhesion in hydrogel contacts
    Torres, J. R.
    Jay, G. D.
    Kim, K. -S.
    Bothun, G. D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189):
  • [36] Wet adhesion on rough surfaces: A JKR model with thermodynamic considerations
    Sun, Yi
    Xie, Zongda
    He, Peiying
    Xu, Guozhuang
    Wang, Xiufeng
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 292
  • [37] A random process asperity model for adhesion between rough surfaces
    Ciavarella, Michele
    Papangelo, Antonio
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2017, 31 (22) : 2445 - 2467
  • [38] Use of the JKR model for calculating adhesion between rough surfaces
    Hodges, CS
    Looi, L
    Cleaver, JAS
    Ghadiri, M
    LANGMUIR, 2004, 20 (22) : 9571 - 9576
  • [39] A deterministic epidemic model taking account of repeated contacts between the same individuals
    Diekmann, O
    De Jong, MCM
    Metz, JAJ
    JOURNAL OF APPLIED PROBABILITY, 1998, 35 (02) : 448 - 462
  • [40] A deterministic mixed lubrication model for parallel rough surfaces considering wear evolution
    Geng, Yu
    Zhu, Kaidi
    Qi, Shemiao
    Liu, Yi
    Zhao, Yang
    Yu, Rufei
    Chen, Wei
    Liu, Heng
    TRIBOLOGY INTERNATIONAL, 2024, 194