MULTI-DOCUMENT SUMMARIZATION SYSTEMS COMPARISON

被引:0
作者
Li, Lei [1 ]
Heng, Wei [1 ]
Liu, Ping'an [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci & Technol, Beijing 100876, Peoples R China
来源
2012 IEEE 2nd International Conference on Cloud Computing and Intelligent Systems (CCIS) Vols 1-3 | 2012年
关键词
Multi-document summarization; System comparison; Hierarchical sentence clustering; HLDA; LATENT DIRICHLET ALLOCATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper compared two multi-document summarization systems we developed. One system used hierarchical sentence clustering algorithm to find the important information, while the other system mainly adopted hierarchical Latent Dirichlet Allocation (hLDA) topic model to obtain the sub-topics of multi-document data. Both of the two systems are evaluated and compared on TAC 2010/TAC 2011 data using the ROUGE testing method with same parameters' setting. The results have shown that the hLDA system has got some improvement compared with the clustering system. And normally in ROUGE testing, results from non-stopwords are better than those from stopwords.
引用
收藏
页码:1409 / 1413
页数:5
相关论文
共 20 条
[1]  
[Anonymous], P 2 WORKSH AN NOIS U
[2]  
[Anonymous], 2010, INT J ADV INTELLIGEN
[3]  
[Anonymous], P 48 ANN M ASS COMP
[4]  
[Anonymous], 1999, SIGIR
[5]   Latent Dirichlet Allocation and Singular Value Decomposition based Multi-Document Summarization [J].
Arora, Rachit ;
Ravindran, Balaraman .
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, :713-718
[6]  
Blei D., 2009, J ACM
[7]  
Blei David., 2003, NEURAL INFORM PROCES
[8]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[9]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
[10]  
2-9