The use of higher order finite difference schemes is not dangerous

被引:8
|
作者
Mathe, Peter [1 ]
Pereverzev, Sergei V. [2 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Johann Radon Inst RICAM, A-4040 Linz, Austria
关键词
Numerical differentiation; Finite difference scheme; Spline approximation; NUMERICAL DIFFERENTIATION;
D O I
10.1016/j.jco.2008.05.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss the issue of choosing a finite difference scheme for numerical differentiation in case the smoothness of the underlying function is unknown. If low order finite difference schemes are used for smooth functions, then the best possible accuracy cannot be obtained. This call be circumvented by using higher order finite difference schemes, but there is concern that this may cause bad error behavior. Here we show, theoretically and by numerical simulation, that this is not the case. However, by doing so, the step-size should be chosen a posteriori. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] On the use of higher-order finite-difference schemes on curvilinear and deforming meshes
    Visbal, MR
    Gaitonde, DV
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) : 155 - 185
  • [2] Higher order finite difference schemes for the magnetic induction equations
    Ujjwal Koley
    Siddhartha Mishra
    Nils Henrik Risebro
    Magnus Svärd
    BIT Numerical Mathematics, 2009, 49 : 375 - 395
  • [3] Generalized finite difference schemes with higher order Whitney forms
    Kettunen, Lauri
    Lohi, Jonni
    Rabina, Jukka
    Monkola, Sanna
    Rossi, Tuomo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (04): : 1439 - 1459
  • [4] Generalized finite difference schemes with higher order Whitney forms
    Kettunen, Lauri
    Lohi, Jonni
    Räbinä, Jukka
    Mönkölä, Sanna
    Rossi, Tuomo
    Kettunen, Lauri (lauri.y.o.kettunen@jyu.fi), 1600, EDP Sciences (55): : 1439 - 1459
  • [5] Higher order finite difference schemes for the magnetic induction equations
    Koley, Ujjwal
    Mishra, Siddhartha
    Risebro, Nils Henrik
    Svard, Magnus
    BIT NUMERICAL MATHEMATICS, 2009, 49 (02) : 375 - 395
  • [6] Accuracy of higher-order finite difference schemes on nonuniform grids
    Chung, Y.M. (Y.M.Chung@warwick.ac.uk), 1609, American Inst. Aeronautics and Astronautics Inc. (41):
  • [7] Fully conservative higher order finite difference schemes for incompressible flow
    Morinishi, Y
    Lund, TS
    Vasilyev, OV
    Moin, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (01) : 90 - 124
  • [8] Accuracy of higher-order finite difference schemes on nonuniform grids
    Chung, YM
    Tucker, PG
    AIAA JOURNAL, 2003, 41 (08) : 1609 - 1611
  • [9] Higher-order finite difference schemes for the magnetic induction equations with resistivity
    Koley, U.
    Mishra, S.
    Risebro, N. H.
    Svard, M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) : 1173 - 1193
  • [10] Efficient higher-order finite-difference schemes for parabolic models
    Dodd, N
    COASTAL ENGINEERING, 1996, 28 (1-4) : 57 - 92