The number of guillotine partitions in d dimensions

被引:11
作者
Ackerman, E
Barequet, G [1 ]
Pinter, RY
Romik, D
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
关键词
combinatorial problems; guillotine partitions; binary space partitions;
D O I
10.1016/j.ipl.2006.01.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Guillotine partitions play an important role in many research areas and application domains, e.g., computational geometry, computer graphics, integrated circuit layout, and solid modeling, to mention just a few. In this paper we present an exact summation formula for the number of structurally-different guillotine partitions in d dimensions by n hyperplanes, and then show that it is Theta((2d - 1 + 2 root d-(d- 1))(n)/n(3)/(2)), root (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 167
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1995, HDB COMBINATORICS
[2]  
BALLIEUX C, 1993, INFSRC9325 UTR U NET
[3]  
Chin N., 1989, Computer Graphics, V23, P99, DOI 10.1145/74334.74343
[4]  
DU DZ, 1986, MSR021886 U CAL BERK
[5]  
Fuchs H., 1980, Computer Graphics, V14, P124, DOI 10.1145/965105.807481
[6]   IMPROVED BOUNDS FOR RECTANGULAR AND GUILLOTINE PARTITIONS [J].
GONZALEZ, T ;
ZHENG, SQ .
JOURNAL OF SYMBOLIC COMPUTATION, 1989, 7 (06) :591-610
[7]   ON OPTIMAL GUILLOTINE PARTITIONS APPROXIMATING OPTIMAL D-BOX PARTITIONS [J].
GONZALEZ, TF ;
RAZZAZI, M ;
SHING, MT ;
ZHENG, SQ .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (01) :1-11
[8]  
LENGAUER T, 1990, COMBINATORIAL ALGORT
[9]   Guillotine subdivisions approximate polygonal subdivisions:: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems [J].
Mitchell, JSB .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1298-1309
[10]  
Odlyzko A.M., 1995, Handbook of Combinatorics, V2, P1063