Accuracy and Precision in Camera-Based Fluorescence Correlation Spectroscopy Measurements

被引:55
|
作者
Sankaran, Jagadish [1 ,2 ,3 ,4 ]
Bag, Nirmalya [2 ,3 ]
Kraut, Rachel Susan [4 ]
Wohland, Thorsten [1 ,2 ,3 ]
机构
[1] Singapore MIT Alliance, Singapore 117576, Singapore
[2] Natl Univ Singapore, Ctr BioImaging Sci, Dept Biol Sci, Singapore 117546, Singapore
[3] Natl Univ Singapore, Ctr BioImaging Sci, Dept Chem, Singapore 117546, Singapore
[4] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore
关键词
STANDARD-DEVIATION; CROSS-CORRELATION; BAYESIAN-APPROACH; DIFFUSION; FCS; SIMULATIONS; RESOLUTION; TRANSPORT; NOISE; CCD;
D O I
10.1021/ac303485t
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Imaging fluorescence correlation spectroscopy (FCS) performed using array detectors has been successfully used to quantify the number, mobility, and organization of biomolecules in cells and organisms. However, there have not been any systematic studies on the errors in these estimates that are introduced due to instrumental and experimental factors. State-of-the-art array detectors are still restricted in the number of frames that can be recorded per unit time, sensitivity and noise characteristics, and the total number of frames that can be realistically recorded. These limitations place constraints on the time resolution, the signal-to-noise ratio, and the total measurement time, respectively. This work addresses these problems by using a combination of simulations and experiments on lipid bilayers to provide characteristic performance parameters and guidelines that govern accuracy and precision of diffusion coefficient and concentration measurements in camera-based FCS. We then proceed to demonstrate the effects of these parameters on the capability of camera-based FCS to determine membrane heterogeneity via the FCS diffusion laws, showing that there is a lower length scale limit beyond which membrane organization cannot be detected and which can be overcome by choosing suitable experimental parameters. On the basis of these results, we provide guidelines for an efficient experimental design for camera-based FCS to extract information on mobility, concentration, and heterogeneity.
引用
收藏
页码:3948 / 3954
页数:7
相关论文
共 50 条
  • [1] Applications of fluorescence correlation spectroscopy:: Polydispersity measurements
    Starchev, K
    Buffle, J
    Pérez, E
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 213 (02) : 479 - 487
  • [2] The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy
    Singh, Anand Pratap
    Krieger, Jan Wolfgang
    Buchholz, Jan
    Charbon, Edoardo
    Langowski, Joerg
    Wohland, Thorsten
    OPTICS EXPRESS, 2013, 21 (07): : 8652 - 8668
  • [3] Camera-based optical palpation
    Sanderson, Rowan W.
    Fang, Qi
    Curatolo, Andrea
    Adams, Wayne
    Lakhiani, Devina D.
    Ismail, Hina M.
    Foo, Ken Y.
    Dessauvagie, Benjamin F.
    Latham, Bruce
    Yeomans, Chris
    Saunders, Christobel M.
    Kennedy, Brendan F.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [4] Fluorescence correlation spectroscopy in vivo
    Muetze, Joerg
    Ohrt, Thomas
    Schwille, Petra
    LASER & PHOTONICS REVIEWS, 2011, 5 (01) : 52 - 67
  • [5] Noise on fluorescence correlation spectroscopy
    Starchev, K
    Ricka, J
    Buffle, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 233 (01) : 50 - 55
  • [6] FCS videos: Fluorescence correlation spectroscopy in space and time
    Wohland, Thorsten
    Sim, Shao Ren
    Demoustier, Marc
    Pandey, Shambhavi
    Kulkarni, Rutuparna
    Aik, Daniel
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2024, 1868 (11):
  • [7] A Fluorescence Correlation Spectrometer for Measurements in Cuvettes
    Sahoo, Bankanidhi
    Sil, Timir Baran
    Karmakar, Biswajit
    Garai, Kanchan
    BIOPHYSICAL JOURNAL, 2018, 115 (03) : 455 - 466
  • [8] Fluorescence correlation spectroscopy
    Ries, Jonas
    Schwille, Petra
    BIOESSAYS, 2012, 34 (05) : 361 - 368
  • [9] Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy
    Ruettinger, S.
    Buschmann, V.
    Kraemer, B.
    Erdmann, R.
    Macdonald, R.
    Koberling, F.
    JOURNAL OF MICROSCOPY, 2008, 232 (02) : 343 - 352
  • [10] Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy
    Sonehara, Tsuyoshi
    Anazawa, Takashi
    Uchida, Kenko
    ANALYTICAL CHEMISTRY, 2006, 78 (24) : 8395 - 8405