Burnett coefficients in quantum many-body systems

被引:5
|
作者
Steinigeweg, R. [1 ,2 ]
Prosen, T. [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany
[2] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
LORENTZ; TRANSPORT;
D O I
10.1103/PhysRevE.87.050103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Burnett coefficient B is investigated for transport in one-dimensional quantum many-body systems. Extensive numerical computations in spin-1/2 chains suggest a linear growth with time, B(t) similar to t, for nonintegrable chains exhibiting diffusive transport. For integrable spin chains in the metallic regime, on the other hand, we find a cubic growth with time, B(t) similar to -D(m)(2)t(3), with the proportionality constant being simply a square of the Drude weight D-m. The results are corroborated with additional studies in noninteracting quantum chains and in the classical limit of large-spin chains.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems
    Bordia, Pranjal
    Lueschen, Henrik
    Scherg, Sebastian
    Gopalakrishnan, Sarang
    Knap, Michael
    Schneider, Ulrich
    Bloch, Immanuel
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [32] Many-Body Localization with Long-Range Interactions
    Nandkishore, Rahul M.
    Sondhi, S. L.
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [33] Dynamical Order and Superconductivity in a Frustrated Many-Body System
    Tindall, J.
    Schlawin, F.
    Buzzi, M.
    Nicoletti, D.
    Coulthard, J. R.
    Gao, H.
    Cavalleri, A.
    Sentef, M. A.
    Jaksch, D.
    PHYSICAL REVIEW LETTERS, 2020, 125 (13)
  • [34] Many-Body Polarization Effects and the Membrane Dipole Potential
    Harder, Edward
    MacKerell, Alexander D., Jr.
    Roux, Benoit
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (08) : 2760 - +
  • [35] Exact Scattering Eigenstates, Many-Body Bound States, and Nonequilibrium Current in an Open Quantum Dot System
    Nishino, Akinori
    Imamura, Takashi
    Hatano, Naomichi
    PHYSICAL REVIEW LETTERS, 2009, 102 (14)
  • [36] Many-body effects in third harmonic generation of graphene
    Rostami, Habib
    Cappelluti, Emmanuele
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [37] Dynamics of strongly interacting systems: From Fock-space fragmentation to many-body localization
    De Tomasi, Giuseppe
    Hetterich, Daniel
    Sala, Pablo
    Pollmann, Frank
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [38] Effect of many-body correlations on mesoscopic charge relaxation
    Lee, Minchul
    Lopez, Rosa
    Choi, Mahn-Soo
    Jonckheere, Thibaut
    Martin, Thierry
    PHYSICAL REVIEW B, 2011, 83 (20):
  • [39] Many-body dispersion interactions for periodic systems based on maximally localized Wannier functions: Application to graphene/water systems
    Partovi-Azar, Pouya
    Kuehne, Thomas D.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (02): : 308 - 313
  • [40] Many-Body Quantum Interference Route to the Two-Channel Kondo Effect: Inverse Design for Molecular Junctions and Quantum Dot Devices
    Sen, Sudeshna
    Mitchell, Andrew K.
    PHYSICAL REVIEW LETTERS, 2024, 133 (07)