Burnett coefficients in quantum many-body systems

被引:5
|
作者
Steinigeweg, R. [1 ,2 ]
Prosen, T. [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany
[2] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
LORENTZ; TRANSPORT;
D O I
10.1103/PhysRevE.87.050103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Burnett coefficient B is investigated for transport in one-dimensional quantum many-body systems. Extensive numerical computations in spin-1/2 chains suggest a linear growth with time, B(t) similar to t, for nonintegrable chains exhibiting diffusive transport. For integrable spin chains in the metallic regime, on the other hand, we find a cubic growth with time, B(t) similar to -D(m)(2)t(3), with the proportionality constant being simply a square of the Drude weight D-m. The results are corroborated with additional studies in noninteracting quantum chains and in the classical limit of large-spin chains.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] QUANTUM THEORY OF MANY-BODY SYSTEMS
    HUGENHOLTZ, NM
    REPORTS ON PROGRESS IN PHYSICS, 1965, 28 : 201 - +
  • [2] Many-body Wigner quantum systems
    Palev, TD
    Stoilova, NI
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) : 2506 - 2523
  • [3] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [4] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [5] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [6] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [7] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [8] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [9] Quantum trajectories and open many-body quantum systems
    Daley, Andrew J.
    ADVANCES IN PHYSICS, 2014, 63 (02) : 77 - 149
  • [10] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)