Hyers-Ulam stability of a generalized additive set-valued functional equation

被引:8
作者
Jang, Sun Young [1 ]
Park, Choonkil [2 ]
Cho, Young [3 ]
机构
[1] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[3] Ulsan Coll, Fac Elect & Elect Engn, Ulsan 680749, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam stability; generalized additive set-valued functional equation; closed and convex set; cone; EQUILIBRIUM; EXISTENCE;
D O I
10.1186/1029-242X-2013-101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define a generalized additive set-valued functional equation, which is related to the following generalized additive functional equation: f(x(1) + ... + x(l)) = (l-1)f(x(1) + ... + x(l-1)/l-1) + f(x(l)) for a fixed integer l with l > 1, and prove the Hyers-Ulam stability of the generalized additive set-valued functional equation.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 29 条
  • [1] Aczel J., 1989, ENCY MATH APPL, V31
  • [2] [Anonymous], 2002, HDB MEASURE THEORY
  • [3] [Anonymous], PREPRINT
  • [4] [Anonymous], 1940, PROBLEMS MODERN MATH
  • [5] [Anonymous], ZESZYTY NAUKOWE
  • [6] [Anonymous], CORE EQUILIBRIA LARG
  • [7] [Anonymous], 1998, Stability of Functional Equations in Several Variables
  • [8] Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
  • [9] EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY
    Arrow, Kenneth J.
    Debreu, Gerard
    [J]. ECONOMETRICA, 1954, 22 (03) : 265 - 290
  • [10] Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0