Coalescence and criticality of graphs

被引:2
作者
Grobler, P. J. P. [1 ]
Roux, A. [1 ]
机构
[1] Univ Stellenbosch, Dept Math Sci, ZA-7602 Matieland, South Africa
关键词
Coalescence; Vertex-critical; Domination; Irredundance;
D O I
10.1016/j.disc.2013.01.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The domination number gamma (G) of a graph G is the least number of vertices in a dominating set of G, and the lower irredundance number ir (G) is the least number of vertices in a maximal irredundant set of G. For each of these graph parameters, we establish bounds on the parameter of the coalescence of two graphs in terms of the parameters of the two respective graphs. These results are then utilised in the construction of graphs that are gamma-critical but not ir-critical. Such graphs were not previously known to exist. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1087 / 1097
页数:11
相关论文
共 8 条
  • [1] Berge C., 2001, DOVER BOOKS MATH
  • [2] THE IRREDUNDANCE NUMBER AND MAXIMUM DEGREE OF A GRAPH
    BOLLOBAS, B
    COCKAYNE, EJ
    [J]. DISCRETE MATHEMATICS, 1984, 49 (02) : 197 - 199
  • [3] Bicritical domination
    Brigham, RC
    Haynes, TW
    Henning, MA
    Rall, DF
    [J]. DISCRETE MATHEMATICS, 2005, 305 (1-3) : 18 - 32
  • [4] VERTEX DOMINATION CRITICAL GRAPHS
    BRIGHAM, RC
    CHINN, PZ
    DUTTON, RD
    [J]. NETWORKS, 1988, 18 (03) : 173 - 179
  • [5] Cockayne E.J., 1978, Canad. Math. Bull., V21, P461
  • [6] GROBLER PJP, 1998, THESIS U S AFRICA
  • [7] Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
  • [8] Mojdeh DA, 2010, AUSTRALAS J COMB, V46, P25