ON THE TWO-DIMENSIONAL MOMENT PROBLEM

被引:4
作者
Zagorodnyuk, Sergey [1 ]
机构
[1] Kharkov Natl Univ, Sch Math & Mech, UA-61077 Kharkov, Ukraine
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2010年 / 1卷 / 01期
关键词
Moment problem; Hilbert space; linear equation;
D O I
10.15352/afa/1399900996
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain an algorithm towards solving the two-dimensional moment problem. This algorithm gives the necessary and sufficient conditions for the solvability of the moment problem. It is shown that all solutions of the moment problem can be constructed using this algorithm. In a consequence, analogous results are obtained for the complex moment problem.
引用
收藏
页码:80 / 104
页数:25
相关论文
共 50 条
[31]   On the moment problem for random sums [J].
Gut, A .
JOURNAL OF APPLIED PROBABILITY, 2003, 40 (03) :797-802
[32]   Multivariate distributions and the moment problem [J].
Kleiber, Christian ;
Stoyanov, Jordan .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 113 :7-18
[33]   The moment problem for a Sobolev inner product [J].
Rolanía, DB ;
Lagomasino, GL ;
Cabrera, HP .
JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) :364-380
[34]   On the truncated operator trigonometric moment problem [J].
Zagorodnyuk, Sergey .
CONCRETE OPERATORS, 2015, 2 (01) :37-46
[35]   THE TRUNCATED MATRIX HAUSDORFF MOMENT PROBLEM [J].
Zagorodnyuk, Sergey M. .
METHODS AND APPLICATIONS OF ANALYSIS, 2012, 19 (01) :21-42
[36]   A MOMENT PROBLEM ON SOME TYPES OF HYPERGROUPS [J].
Szekelyhidi, Laszlo ;
Vajday, Laszlo .
ANNALS OF FUNCTIONAL ANALYSIS, 2012, 3 (02) :58-65
[37]   On a moment problem associated with Chebyshev polynomials [J].
Castillo, K. ;
Lamblem, R. L. ;
Ranga, A. Sri .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9571-9574
[38]   ONE GENERALIZATION OF THE CLASSICAL MOMENT PROBLEM [J].
Tesko, Volodymyr .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (04) :356-380
[39]   Modified moment problem in complex domains [J].
Andriyanov, GI .
MATHEMATICAL NOTES, 2002, 72 (5-6) :742-751
[40]   The generalized moment problem with complexity constraint [J].
Byrnes, Christopher I. ;
Lindquist, Anders .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) :163-180