Emulsion Self-Assembly Synthesis of Chitosan/Poly(lactic-co-glycolic acid) Stimuli-Responsive Amphiphiles

被引:13
|
作者
Niu, Xufeng [1 ]
Wang, Lizhen [1 ]
Chen, Pin [1 ]
Li, Xiaoming [1 ]
Zhou, Gang [1 ]
Feng, Qingling [2 ]
Fan, Yubo [1 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Minist Educ, Key Lab Biomechan & Mechanobiol, Beijing 100191, Peoples R China
[2] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
amphiphiles; chitosan; emulsions; poly(lactic-co-lycolic acid); self-assembly; BIOMEDICAL APPLICATIONS; CHITOSAN; BIOMATERIALS; BEHAVIOR; CHEMISTRY; MEMBRANES; NETWORKS; POLYMERS; DELIVERY;
D O I
10.1002/macp.201200597
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
An amphiphilic graft copolymer using chitosan (CS) as a hydrophilic main chain and poly(lactic-co-glycolic acid) (PLGA) as a hydrophobic side chain is prepared through an emulsion self-assembly synthesis. CS aqueous solution is used as a water phase and PLGA in chloroform is served as an oil phase. A water-in-oil (W/O) emulsion is fabricated in the presence of the surfactant span-80. The self-assembly reaction is performed between PLGA and CS under the condensation of EDC. Fourier transform IR (FTIR) spectroscopy reveals that PLGA is grafted onto the backbone of CS through the interactions between end carboxyl and amino groups of the two components. 1H NMR spectroscopy directly indicates the grafting content of PLGA in the CS-graft-PLGA (CS-g-PLGA) copolymer is close to 25%. X-ray diffraction (XRD) confirms that the copolymer exhibits an amorphous structure. The CS-g-PLGA amphiphile can self-assemble to form micelles with size in the range of approximate to 100300 nm, which makes it easy to apply in various targeted-drug-release and biomaterial fields.
引用
收藏
页码:700 / 706
页数:7
相关论文
共 50 条
  • [1] A Novel Study on the Self-Assembly Behavior of Poly(lactic-co-glycolic acid) Polymer Probed by Curcumin Fluorescence
    Zakaria, Hanine
    El Kurdi, Riham
    Patra, Digambara
    ACS OMEGA, 2022, 7 (11): : 9551 - 9558
  • [2] Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids
    Garcia-Diaz, Mara
    Foged, Camilla
    Nielsen, Hanne Morck
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2015, 482 (1-2) : 84 - 91
  • [3] Synthesis and Characterization of Biodegradable Poly(lactic-co-glycolic acid)
    Mei, Fangfang
    Peng, Ya
    Lu, Shoutao
    Sun, Fei
    Zhang, Ying
    Ge, Cui
    Zhang, Yong
    Gu, Hualin
    Wang, Yangdan
    Zhao, Xinwei
    Wang, Guoyao
    Journal of Macromolecular Science Part B-Physics, 2015, 54 (05): : 562 - 570
  • [4] POLY 385-Self-assembly of rod amphiphiles into stimuli-responsive nanostructures
    Lee, Myongsoo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [5] Synthesis and Self-Assembly of Stimuli-Responsive Amphiphilic Dendrimers
    Myung, Sayun
    Kim, Gwang Mo
    Noh, Hyeongju
    Kim, Ho-Joong
    Yang, Si Kyung
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2021, 222 (19)
  • [6] Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic acid)/chitosan microspheres
    Rahman, Shekh M.
    Mahoney, Christopher
    Sankar, Jagannathan
    Marra, Kacey G.
    Bhattarai, Narayan
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 203 : 59 - 66
  • [7] Stimuli-responsive self-assembly of nanoparticles
    Grzelczak, Marek
    Liz-Marzan, Luis M.
    Klajn, Rafal
    CHEMICAL SOCIETY REVIEWS, 2019, 48 (05) : 1342 - 1361
  • [8] Stimuli-Responsive Macromolecular Self-Assembly
    Jiang, Chunqiang
    Xu, Guohe
    Gao, Jianping
    SUSTAINABILITY, 2022, 14 (18)
  • [9] Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin
    Xu, Bin
    Jiang, Guohua
    Yu, Weijiang
    Liu, Depeng
    Liu, Yongkun
    Kong, Xiangdong
    Yao, Juming
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 78 : 420 - 428
  • [10] Experimental Comparative Study of the Histotoxicity of Poly(Lactic-co-Glycolic Acid) copolymer and Poly(Lactic-co-Glycolic Acid)-Poly(Isoprene) Blend
    Kim, Jung Ho
    Marques, Douglas Ramos
    Faller, Gustavo Juliani
    Collares, Marcus Vinicius
    Rodriguez, Rubens
    dos Santos, Luis Alberto
    Dias, Diego da Silva
    POLIMEROS-CIENCIA E TECNOLOGIA, 2014, 24 (05): : 529 - 535