Triboelectric nanogenerator metamaterials for joint structural vibration mitigation and self-powered structure monitoring

被引:21
作者
Yuan, Ming [1 ,2 ,3 ]
Yu, Wenping [1 ,2 ]
Jiang, Yawei [1 ,2 ]
Ding, Zhenjun [4 ]
Zhang, Zifeng [5 ,6 ]
Zhang, Xueyong [3 ]
Xie, Yannan [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat & Artificial Intelligence, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Adv Mat, Jiangsu Natl Synerget Innovat Ctr Adv Mat, Jiangsu Key Lab Biosensors, Nanjing 210023, Jiangsu, Peoples R China
[3] Anhui Higher Educ Inst, Key Lab Architectural Acoust Environm, Hefei 230601, Peoples R China
[4] Beijing Inst Struct & Environm Engn, Beijing 100076, Peoples R China
[5] Chaohu Univ, Coll Mech Engn, Chaohu 238000, Anhui, Peoples R China
[6] Chaohu Univ, Anhui Prov Engn Res Ctr Highefficiency & Intellige, Chaohu 238000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Vibration mitigation; Self-powered system; Local resonant metamaterials; Multifunctional structure;
D O I
10.1016/j.nanoen.2022.107773
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A metamaterial-inspired triboelectric nanogenerator (META-TENG) is proposed in this work to simultaneously realize vibration suppression and energy harvesting. The compact META-TENG can generate low frequency local resonant phenomenon and significantly reduce the incident vibration at the low-frequency band. A planar spring is created, which guarantees low-frequency resonance and a sufficient triboelectric contact surface within a small-scale device. The bandgap property of the proposed metamaterial is then calculated using the finite element method and corresponds well with the experimental measurement results. To fabricate the TENG, fluorinated ethylene propylene (FEP) film and Ecoflex are employed as the negative and positive triboelectric materials, respectively. It is found that the introduction of multi-walled carbon nanotubes (MWCNTs) into Ecoflex is favorable for enhancing the META-TENG's output performance, increasing the output voltage by almost three times. The charge density of the TENG can reach up to 453.1 mu C/m2under 5 N sinuous excitation. The periodic META-TENG configuration also exhibits satisfying vibration suppression performance, where the vibration amplitude of an aluminum plate integrating four META-TENGs is minimized by up to 87 %. The harvested energy from the META-TENG array enables an accelerometer and Bluetooth module to work in wireless mode, making the whole system achieve self-powered vibration monitoring.
引用
收藏
页数:9
相关论文
共 49 条
[31]   Multi-Parameter Optimized Triboelectric Nanogenerator Based Self-Powered Sensor Network for Broadband Aeolian Vibration Online-Monitoring of Transmission Lines [J].
Wu, Han ;
Wang, Jiyu ;
Wu, Zhiyi ;
Kang, Shenglin ;
Wei, Xuelian ;
Wang, Hanqing ;
Luo, Hao ;
Yang, Lijun ;
Liao, Ruijin ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2022, 12 (13)
[32]   Multi-Mode Water-Tube-Based Triboelectric Nanogenerator Designed for Low-Frequency Energy Harvesting with Ultrahigh Volumetric Charge Density [J].
Wu, Hao ;
Wang, Zuankai ;
Zi, Yunlong .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[33]   Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor [J].
Xi, Yi ;
Guo, Hengyu ;
Zi, Yunlong ;
Li, Xiaogan ;
Wang, Jie ;
Deng, Jianan ;
Li, Shengming ;
Hu, Chenguo ;
Cao, Xia ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (12)
[34]   Green fabrication of double-sided self-supporting triboelectric nanogenerator with high durability for energy harvesting and self-powered sensing [J].
Xie, Yibing ;
Hu, Jiashun ;
Li, Heng ;
Mi, Hao-Yang ;
Ni, Gaolei ;
Zhu, Xiaoshuai ;
Jing, Xin ;
Wang, Yameng ;
Zheng, Guoqiang ;
Liu, Chuntai ;
Shen, Changyu .
NANO ENERGY, 2022, 93
[35]   A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing [J].
Xu, Minyi ;
Wang, Peihong ;
Wang, Yi-Cheng ;
Zhang, Steven L. ;
Wang, Aurelia Chi ;
Zhang, Chunli ;
Wang, Zhengjun ;
Pan, Xinxiang ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2018, 8 (09)
[36]   A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction [J].
Xu, Qinghao ;
Lu, Yuting ;
Zhao, Shiyu ;
Hu, Ning ;
Jiang, Yawei ;
Li, Hang ;
Wang, Yue ;
Gao, Haiqi ;
Li, Yi ;
Yuan, Ming ;
Chu, Liang ;
Li, Jiahui ;
Xie, Yannan .
NANO ENERGY, 2021, 89
[37]   A portable triboelectric spirometer for wireless pulmonary function monitoring [J].
Xu, Qinghao ;
Fang, Yunsheng ;
Jing, B. Qingshen ;
Hu, Ning ;
Lin, Ke ;
Pan, Yifan ;
Xu, Lin ;
Gao, Haiqi ;
Yuan, Ming ;
Chu, Liang ;
Ma, Yanwen ;
Xie, Yannan ;
Chen, Jun ;
Wang, Lianhui .
BIOSENSORS & BIOELECTRONICS, 2021, 187
[38]   Multifunctional Metamaterials for Energy Harvesting and Vibration Control [J].
Xu, Xianchen ;
Wu, Qian ;
Pang, Yaokun ;
Cao, Yuteng ;
Fang, Yuhui ;
Huang, Guoliang ;
Cao, Changyong .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (07)
[39]   Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition [J].
Yan, Lixia ;
Mi, Yajun ;
Lu, Yin ;
Qin, Qinghao ;
Wang, Xueqing ;
Meng, Jiajing ;
Liu, Fei ;
Wang, Ning ;
Cao, Xia .
NANO ENERGY, 2022, 96
[40]  
Young W.C., 2002, Roark's Formulas for Stress and Strain, VSeventh