Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrodinger equation

被引:118
作者
Liu, Xiaoyan [1 ,2 ]
Liu, Wenjun [1 ,2 ]
Triki, Houria [3 ]
Zhou, Qin [4 ]
Biswas, Anjan [5 ,6 ,7 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Badji Mokhtar Univ, Radiat Phys Lab, Dept Phys, Fac Sci, POB 12, Annaba 23000, Algeria
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[5] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[6] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[7] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
The Hirota bilinear method; Soliton solutions; Periodic attenuating oscillation; OPTICAL SOLITONS; LASER; DISPERSION; WAVE; TRANSMISSION; MODULATION; BOUSSINESQ; ABSORBERS; WELL;
D O I
10.1007/s11071-019-04822-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
According to the change in the amplitude of the oscillation, it can be divided into equal-amplitude oscillation, amplitude-reduced oscillation (attenuating oscillation) and amplitude-increasing oscillation (divergence oscillation). In this paper, the periodic attenuating oscillation of solitons for a higher-order variable coefficient nonlinear Schrodinger equation is investigated. Analytic one- and two-soliton solutions of this equation are obtained by the Hirota bilinear method. By analyzing the soliton propagation properties, we study how to choose the corresponding parameters to control the soliton propagation and periodic attenuation oscillation phenomena. Results might be of significance for the study of optical communications including soliton control, amplification, compression and interactions.
引用
收藏
页码:801 / 809
页数:9
相关论文
共 84 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]   MODULATION INSTABILITY INDUCED BY CROSS-PHASE MODULATION [J].
AGRAWAL, GP .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :880-883
[3]  
Agrawal GP., 2020, Applications of Non Linear Fiber Optics, V3
[4]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[5]   Bell and kink type soliton solutions in birefringent nano-fibers [J].
Ali, K. ;
Rizvi, S. T. R. ;
Ahmad, S. ;
Bashir, S. ;
Younis, M. .
OPTIK, 2017, 142 :327-333
[6]   Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrodinger equation with self-steepening and self-frequency shift [J].
Alka ;
Goyal, Amit ;
Gupta, Rama ;
Kumar, C. N. ;
Raju, Thokala Soloman .
PHYSICAL REVIEW A, 2011, 84 (06)
[7]   Moving fronts for complex Ginzburg-Landau equation with Raman term [J].
Ankiewicz, A ;
Akhmediev, N .
PHYSICAL REVIEW E, 1998, 58 (05) :6723-6727
[8]   Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser [J].
Cai, Wei ;
Jiang, Shouzhen ;
Xu, Shicai ;
Li, Yaqi ;
Liu, Jie ;
Li, Chun ;
Zheng, Lihe ;
Su, Liangbi ;
Xu, Jun .
OPTICS AND LASER TECHNOLOGY, 2015, 65 :1-4
[9]   Picosecond passively mode-locked laser of 532 nm by reflective carbon nanotube [J].
Cai, Wei ;
Peng, Qianqian ;
Hou, Wei ;
Liu, Jie ;
Wang, Yonggang .
OPTICS AND LASER TECHNOLOGY, 2014, 58 :194-196
[10]   Self-similar localized pulses for the nonlinear Schrodinger equation with distributed cubic-quintic nonlinearity [J].
Choudhuri, Amitava ;
Triki, Houria ;
Porsezian, K. .
PHYSICAL REVIEW A, 2016, 94 (06)