Linear magnetoresistance versus weak antilocalization effects in Bi2Te3

被引:50
作者
Wang, Zhenhua [1 ]
Yang, Liang [1 ]
Zhao, Xiaotian [1 ]
Zhang, Zhidong [1 ]
Gao, Xuan P. A. [2 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
基金
中国国家自然科学基金;
关键词
linear magnetoresistance; weak antilocalization; Bi2Te3; films; topological insulators; SINGLE DIRAC CONE; TOPOLOGICAL-INSULATOR; QUANTUM;
D O I
10.1007/s12274-015-0801-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In chalcogenide topological insulator materials, two types of magnetoresistance (MR) effects are widely discussed: a sharp MR dip around zero magnetic field, associated with the weak antilocalization (WAL) effect, and a linear MR (LMR) effect that generally persists to high fields and high temperatures. We have studied the MR of thin films of the topological insulator Bi2Te3 from the metallic to semiconducting transport regime. In the metallic samples, the WAL is difficult to identify owing to the low magnitude of the WAL compared to the samples' conductivity. Furthermore, the sharp WAL dip in the MR is clearly present in samples with a higher resistivity. To correctly account for the low-field MR with the quantitative theory of the WAL according to the Hikami-Larkin-Nagaoka (HLN) model, we find that the classical (linear) MR effect should be taken into account in combination with the WAL quantum correction. Otherwise, the WAL fitting alone yields an unrealistically large coefficient alpha in the HLN analysis. This work clarifies the WAL and LMR as two distinct effects and offers an explanation for the overly large alpha in the WAL analysis of topological insulators in some studies.
引用
收藏
页码:2963 / 2969
页数:7
相关论文
共 33 条
[1]   Quantum linear magnetoresistance [J].
Abrikosov, AA .
EUROPHYSICS LETTERS, 2000, 49 (06) :789-793
[2]   Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures [J].
Assaf, B. A. ;
Cardinal, T. ;
Wei, P. ;
Katmis, F. ;
Moodera, J. S. ;
Heiman, D. .
APPLIED PHYSICS LETTERS, 2013, 102 (01)
[3]   Weak Antilocalization in Bi2(SexTe1-x)3 Nanoribbons and Nanoplates [J].
Cha, Judy J. ;
Kong, Desheng ;
Hong, Seung-Sae ;
Analytis, James G. ;
Lai, Keji ;
Cui, Yi .
NANO LETTERS, 2012, 12 (02) :1107-1111
[4]   Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3 [J].
Checkelsky, J. G. ;
Hor, Y. S. ;
Cava, R. J. ;
Ong, N. P. .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[5]   Gate-Voltage Control of Chemical Potential and Weak Antilocalization in Bi2Se3 [J].
Chen, J. ;
Qin, H. J. ;
Yang, F. ;
Liu, J. ;
Guan, T. ;
Qu, F. M. ;
Zhang, G. H. ;
Shi, J. R. ;
Xie, X. C. ;
Yang, C. L. ;
Wu, K. H. ;
Li, Y. Q. ;
Lu, L. .
PHYSICAL REVIEW LETTERS, 2010, 105 (17)
[6]   Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 [J].
Chen, Y. L. ;
Analytis, J. G. ;
Chu, J. -H. ;
Liu, Z. K. ;
Mo, S. -K. ;
Qi, X. L. ;
Zhang, H. J. ;
Lu, D. H. ;
Dai, X. ;
Fang, Z. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. -X. .
SCIENCE, 2009, 325 (5937) :178-181
[7]   Weak antilocalization in topological insulator Bi2Te3 microflakes [J].
Chiu, Shao-Pin ;
Lin, Juhn-Jong .
PHYSICAL REVIEW B, 2013, 87 (03)
[8]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[9]   Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets [J].
Gao, B. F. ;
Gehring, P. ;
Burghard, M. ;
Kern, K. .
APPLIED PHYSICS LETTERS, 2012, 100 (21)
[10]   Impurity Effect on Weak Antilocalization in the Topological Insulator Bi2Te3 [J].
He, Hong-Tao ;
Wang, Gan ;
Zhang, Tao ;
Sou, Iam-Keong ;
Wong, George K. L. ;
Wang, Jian-Nong ;
Lu, Hai-Zhou ;
Shen, Shun-Qing ;
Zhang, Fu-Chun .
PHYSICAL REVIEW LETTERS, 2011, 106 (16)