Lumbar muscle and vertebral bodies segmentation of chemical shift encoding-based water-fat MRI: the reference database MyoSegmenTUM spine

被引:14
作者
Burian, Egon [1 ]
Rohrmeier, Alexander [1 ]
Schlaeger, Sarah [1 ,2 ]
Dieckmeyer, Michael [1 ,2 ]
Diefenbach, Maximilian N. [2 ]
Syvaeri, Jan [2 ]
Klupp, Elisabeth [1 ]
Weidlich, Dominik [2 ]
Zimmer, Claus [1 ]
Rummeny, Ernst J. [2 ]
Karampinos, Dimitrios C. [2 ]
Kirschke, Jan S. [1 ]
Baum, Thomas [1 ]
机构
[1] Tech Univ Munich, Klinikum Rechts Isar, Dept Diagnost & Intervent Neuroradiol, Munich, Germany
[2] Tech Univ Munich, Klinikum Rechts Isar, Dept Diagnost & Intervent Radiol, Munich, Germany
基金
欧洲研究理事会;
关键词
Magnetic resonance imaging; Proton density fat fraction; Lumbar spine; Muscle; Bone marrow; Segmentation; ADIPOSE-TISSUE; MARROW FAT; QUANTIFICATION; FRACTION;
D O I
10.1186/s12891-019-2528-x
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: Magnetic resonance imaging (MRI) is the modality of choice for diagnosing and monitoring muscular tissue pathologies and bone marrow alterations in the context of lower back pain, neuromuscular diseases and osteoporosis. Chemical shift encoding-based water-fat MRI allows for reliable determination of proton density fat fraction (PDFF) of the muscle and bone marrow. Prior to quantitative data extraction, segmentation of the examined structures is needed. Performed manually, the segmentation process is time consuming and therefore limiting the clinical applicability. Thus, the development of automated segmentation algorithms is an ongoing research focus. Construction and content: This database provides ground truth data which may help to develop and test automatic lumbar muscle and vertebra segmentation algorithms. Lumbar muscle groups and vertebral bodies (L1 to L5) were manually segmented in chemical shift encoding-based water-fat MRI and made publically available in the database MyoSegmenTUM. The database consists of water, fat and PDFF images with corresponding segmentation masks for lumbar muscle groups (right/left erector spinae and psoas muscles, respectively) and lumbar vertebral bodies 1-5 of 54 healthy Caucasian subjects. The database is freely accessible online at https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56. Conclusion: A development and testing of segmentation algorithms based on this database may allow the use of quantitative MRI in clinical routine.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision
    Bahl, Manisha
    Barzilay, Regina
    Yedidia, Adam B.
    Locascio, Nicholas J.
    Yu, Lili
    Lehman, Constance D.
    [J]. RADIOLOGY, 2018, 286 (03) : 810 - 818
  • [2] Baudin PY, 2012, LECT NOTES COMPUT SC, V7510, P569, DOI 10.1007/978-3-642-33415-3_70
  • [3] MR-based assessment of body fat distribution and characteristics
    Baum, Thomas
    Cordes, Christian
    Dieckmeyer, Michael
    Ruschke, Stefan
    Franz, Daniela
    Hauner, Hans
    Kirschke, Jan S.
    Karampinos, Dimitrios C.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (08) : 1512 - 1518
  • [4] Assessment of Whole Spine Vertebral Bone Marrow Fat Using Chemical Shift-Encoding Based Water-Fat MRI
    Baum, Thomas
    Yap, Samuel P.
    Dieckmeyer, Michael
    Ruschke, Stefan
    Eggers, Holger
    Kooijman, Hendrik
    Rummeny, Ernst J.
    Bauer, Jan S.
    Karampinos, Dimitrios C.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (04) : 1018 - 1023
  • [5] Automatic quantification of muscle volumes in magnetic resonance imaging scans of the lower extremities
    Brunner, Gerd
    Nambi, Vijay
    Yang, Eric
    Kumar, Anirudh
    Virani, Salim S.
    Kougias, Panagiotis
    Shah, Dipan
    Lumsden, Alan
    Ballantyne, Christie M.
    Morrisett, Joel D.
    [J]. MAGNETIC RESONANCE IMAGING, 2011, 29 (08) : 1065 - 1075
  • [6] Skeletal muscle quantitative nuclear magnetic resonance imaging follow-up of adult Pompe patients
    Carlier, Pierre G.
    Azzabou, Noura
    de Sousa, Paulo Loureiro
    Hicks, Arnaud
    Boisserie, Jean-Marc
    Amadon, Alexis
    Carlier, Robert-Yves
    Wary, Claire
    Orlikowski, David
    Laforet, Pascal
    [J]. JOURNAL OF INHERITED METABOLIC DISEASE, 2015, 38 (03) : 565 - 572
  • [7] Deep Learning to Classify Radiology Free-Text Reports
    Chen, Matthew C.
    Ball, Robyn L.
    Yang, Lingyao
    Moradzadeh, Nathaniel
    Chapman, Brian E.
    Larson, David B.
    Langlotz, Curtis P.
    Amrhein, Timothy J.
    Lungren, Matthew P.
    [J]. RADIOLOGY, 2018, 286 (03) : 845 - 852
  • [8] Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method
    Chu, Chengwen
    Belavy, Daniel L.
    Armbrecht, Gabriele
    Bansmann, Martin
    Felsenberg, Dieter
    Zheng, Guoyan
    [J]. PLOS ONE, 2015, 10 (11):
  • [9] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [10] Magnetic Resonance Imaging and Spectroscopy Assessment of Lower Extremity Skeletal Muscles in Boys with Duchenne Muscular Dystrophy: A Multicenter Cross Sectional Study
    Forbes, Sean C.
    Willcocks, Rebecca J.
    Triplett, William T.
    Rooney, William D.
    Lott, Donovan J.
    Wang, Dah-Jyuu
    Pollaro, Jim
    Senesac, Claudia R.
    Daniels, Michael J.
    Finkel, Richard S.
    Russman, Barry S.
    Byrne, Barry J.
    Finanger, Erika L.
    Tennekoon, Gihan I.
    Walter, Glenn A.
    Sweeney, H. Lee
    Vandenborne, Krista
    [J]. PLOS ONE, 2014, 9 (09):