This study examined the ability of near-infrared reflectance spectroscopy method (FT-NIRS) and multivariate calibration to estimate the concentration of moisture, protein, lipid, ash and carbohydrate of Brazilian soybeans. The spectra obtained in the range of 4000 to 10,000 cm(-1) were preprocessed by several combinations of mathematical treatments: MSC (multiplicative scatter correction), SNV (standard normal variate) or first and second derivative and all data were mean centered before the calibration, for which was used the PLS method (partial least squares). The best calibration models found in this study were the ones used to determine protein and moisture contents (R-2=0.81, RMSEP=1.61% and R-2=0.80, RMSEC=1.55%, respectively). However, the technique shows high predictability for all parameters, including lipids, ashes and carbohydrates, with RMSECV of 0.40 to 230% and RMSEP of 038 to 3.71%. This result shows the viability of using NIR in controlling the quality parameters of soybeans. (C) 2012 Elsevier Ltd. All rights reserved.