Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative

被引:29
作者
Shahiduzzaman, Md [1 ,2 ]
Karakawa, Makoto [2 ,3 ,4 ]
Yamamoto, Kohei [3 ]
Kusumi, Takuji [3 ]
Yonezawa, Kyosuke [3 ]
Kuwabara, Takayuki [3 ,4 ]
Takahashi, Kohshin [3 ,4 ]
Taima, Tetsuya [2 ,3 ,4 ]
机构
[1] Tokai Univ, Fac Sci, Dept Chem, Hiratsuka, Kanagawa 2591292, Japan
[2] Kanazawa Univ, Inst Frontier Sci Initiat InFiniti, Kanazawa, Ishikawa 9201192, Japan
[3] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan
[4] Kanazawa Univ, Res Ctr Sustainable Energy & Technol, Kanazawa, Ishikawa 9201192, Japan
关键词
Interface engineering; Low-temperature processable; Fullerene derivative; Planar perovskite solar cells; ELECTRON TRANSPORTING LAYER; PERFORMANCE; OXIDE;
D O I
10.1016/j.solmat.2018.01.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Interface engineering plays a promising strategy to produce highly efficient planar heterojunction (PHJ) perovskite solar cells. The deep trap states on the compact-TiOx surface leading to a large leakage current and recombination of charge carriers. To solve the problems, interfacial engineering of electron collecting layer (ECL) compact-TiOx by a thin-layer of one-step solution-processed and low-cost organic material is applied. In contrast, commonly used PCBM is still expensive material. Herein, a new, low-temperature processable higher potential of [60]fulleropyrrolidine derivatives named as N-phenyl[60]fulleropyrrolidines (PNP) was introduced as an interfacial modification of ECL compact-TiOx with the varying thickness of 10, 20, and 30 nm to replace the commonly used PCBM in PHJ perovskite solar cells. The modified surface morphology was achieved by introducing PNP interfacial layers that enhanced the surface-energy properties of the cells in terms of enhanced photocurrent. Compared with PCBM, PNP features a higher electronic mobility and stronger hydrophobic nature. The enhancement of power conversion efficiency was obtained from 5.12% to 8.23%, with an increase in short-circuit current density (J(sc)) from 11.90 to 21.44 mA cm(-2) and fill factor (FF) from 0.49 to 0.56 owing to insertion of optimum 10-nm-thickness PNP that led to more efficient electron transport and charge extraction in the solar cell performances. The present work provides an important sign in the aspects to the low-cost mass production of perovskite solar cells.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 43 条
[1]   High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers [J].
Abrusci, Agnese ;
Stranks, Samuel D. ;
Docampo, Pablo ;
Yip, Hin-Lap ;
Jen, Alex K-Y. ;
Snaith, Henry J. .
NANO LETTERS, 2013, 13 (07) :3124-3128
[2]   Interfacial modification of the electron collecting layer of low-temperature solution-processed organometallic halide photovoltaic cells using an amorphous perylenediimide [J].
Adhikari, Tham ;
Shahiduzzaman, Md. ;
Yamamoto, Kohei ;
Lebel, Olivier ;
Nunzi, Jean-Michel .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 160 :294-300
[3]   Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2-In2O3 electron transport layer [J].
Apostolopoulou, Andigoni ;
Sygkridou, Dimitra ;
Rapsomanikis, Andreas ;
Kalarakis, Alexandros N. ;
Stathatos, Elias .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 166 :100-107
[4]   Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J].
Beek, WJE ;
Wienk, MM ;
Kemerink, M ;
Yang, XN ;
Janssen, RAJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (19) :9505-9516
[5]   The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells [J].
Chen, Qi ;
Zhou, Huanping ;
Fang, Yihao ;
Stieg, Adam Z. ;
Song, Tze-Bin ;
Wang, Hsin-Hua ;
Xu, Xiaobao ;
Liu, Yongsheng ;
Lu, Shirong ;
You, Jingbi ;
Sun, Pengyu ;
Mckay, Jeff ;
Goorsky, Mark S. ;
Yang, Yang .
NATURE COMMUNICATIONS, 2015, 6
[6]   Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process [J].
Chen, Qi ;
Zhou, Huanping ;
Hong, Ziruo ;
Luo, Song ;
Duan, Hsin-Sheng ;
Wang, Hsin-Hua ;
Liu, Yongsheng ;
Li, Gang ;
Yang, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :622-625
[7]   Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells [J].
Dualeh, Amalie ;
Moehl, Thomas ;
Tetreault, Nicolas ;
Teuscher, Joel ;
Gao, Peng ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael .
ACS NANO, 2014, 8 (01) :362-373
[8]   2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells [J].
Gan, Xiaoyan ;
Wang, Ou ;
Liu, Keyong ;
Du, Xiangjun ;
Guo, Liling ;
Liu, Hanxing .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 162 :93-102
[9]   Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability [J].
Gheno, Alexandre ;
Trang Thi Thu Pham ;
Di Bin, Catherine ;
Boucle, Johann ;
Ratier, Bernard ;
Vedraine, Sylvain .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 161 :347-354
[10]   Nanosheet-based printable perovskite solar cells [J].
Guo, Daipeng ;
Yu, Jiaguo ;
Fan, Ke ;
Zou, Haiyuan ;
He, Bowen .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 :518-525