Local infimum and a family of maximum principles in optimal control

被引:8
作者
Avakov, E. R. [1 ,2 ]
Magaril-Il'yaev, G. G. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia
[2] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
[3] Russian Acad Sci, Kharkevich Inst, Inst Informat Transmiss Problems, Moscow, Russia
[4] Russian Acad Sci, Southern Math Inst, Vladikavkaz Sci Ctr, Vladikavkaz, Russia
关键词
local infimum; optimal trajectory; maximum principle; sliding regime;
D O I
10.1070/SM9234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a local infimum for the optimal control problem, which generalizes the notion of an optimal trajectory, is introduced. For a local infimum the existence theorem is proved and necessary conditions in the form of a family of 'maximum principles' are derived. The meaningfulness of the necessary conditions, which generalize and strengthen Pontryagin's maximum principle, is illustrated by examples. Bibliography: 9 titles.
引用
收藏
页码:750 / 785
页数:36
相关论文
共 9 条
[1]  
Alekseev V. M., 1979, CONT SOVIET MATH, DOI [10.1007/978-1-4615-7551-1, DOI 10.1007/978-1-4615-7551-1]
[2]  
Avakov ER, 2013, USP MAT NAUK, V68, P5, DOI DOI 10.4213/rm9525
[3]  
[Аваков Евгений Рачиевич Avakov Evgeniy Rachievich], 2012, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V91, P813, DOI 10.4213/mzm9383
[4]  
Ekeland I., 1976, STUD MATH APPL, V1
[5]  
Filippov A. F., 1959, VESTN MOSKOV U MMAFK, P25
[6]  
Gamkrelidze R. V., 1977, MATH CONCEPTS METHOD, V7
[7]  
Ioffe A. D., 1974, STUD MATH APPL, V6
[8]  
Pontryagin L. S., 1961, MATH THEORY OPTIMAL
[9]  
Zorich, 1984, UNIVERSITEXT