Free random Levy matrices

被引:37
作者
Burda, Z [1 ]
Janik, RA
Jurkiewicz, J
Nowak, MA
Papp, G
Zahed, I
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland
[2] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[5] Eotvos Lorand Univ, HAS Res Grp Theoret Phys, H-1518 Budapest, Hungary
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 02期
关键词
D O I
10.1103/PhysRevE.65.021106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the theory of free random variables and the Coulomb gas analogy, we construct stable random matrix ensembles that are random matrix generalizations of the classical one-dimensional stable Levy distributions. We show that the resolvents for the corresponding matrices obey transcendental equations in the large size limit. We solve these equations in a number of cases, and show that the eigenvalue distributions exhibit Levy tails. For the analytically known Levy measures we explicitly construct the density of states using the method of orthogonal polynomials. We show that the Levy tail distributions are characterized by a different novel form of microscopic universality.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Multicritical microscopic spectral correlators of Hermitian and complex matrices [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, SM .
NUCLEAR PHYSICS B, 1998, 519 (03) :682-714
[2]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[3]  
ALBERT R, CONDMAT0106096
[4]   UNIVERSALITY IN THE RANDOM-MATRIX THEORY OF QUANTUM TRANSPORT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (08) :1155-1158
[5]   Stable laws and domains of attraction in free probability theory [J].
Bercovici, H ;
Pata, V .
ANNALS OF MATHEMATICS, 1999, 149 (03) :1023-1060
[6]   FREE CONVOLUTION OF MEASURES WITH UNBOUNDED SUPPORT [J].
BERCOVICI, H ;
VOICULESCU, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :733-773
[7]  
Bouchaud J.-P., 2000, THEORY FINANCIAL RIS
[8]   Universal singularity at the closure of a gap in a random matrix theory [J].
Brezin, E ;
Hikami, S .
PHYSICAL REVIEW E, 1998, 57 (04) :4140-4149
[9]  
BURDA Z, CONDMAT0103108
[10]  
BURDA Z, CONDMAT0103140