Ghost imaging with atoms

被引:178
作者
Khakimov, R. I. [1 ]
Henson, B. M. . [1 ]
Shin, D. K. [1 ]
Hodgman, S. S. [1 ]
Dall, R. G. [1 ]
Baldwin, K. G. H. [1 ]
Truscott, A. G. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
DIFFRACTION; QUANTUM; LIGHT; WAVES;
D O I
10.1038/nature20154
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ghost imaging is a counter-intuitive phenomenon-first realized in quantum optics(1,2)-that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a 'ghost' image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms(3), which originate from s-wave scattering of two colliding Bose-Einstein condensates(4,5). We use higher-order Kapitza-Dirac scattering(6-8) to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference(9), and enable tests of Einstein-Podolsky-Rosen entanglement(9) and Bell's inequalities(10) with atoms.
引用
收藏
页码:100 / +
页数:8
相关论文
共 33 条
[1]  
Belinskii A. V., 1994, Journal of Experimental and Theoretical Physics, V78, P259
[2]   Quantum and classical coincidence imaging [J].
Bennink, RS ;
Bentley, SJ ;
Boyd, RW ;
Howell, JC .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[3]   Two-photon coincidence imaging with a classical source [J].
Bennink, RS ;
Bentley, SJ ;
Boyd, RW .
PHYSICAL REVIEW LETTERS, 2002, 89 (11)
[4]   Experimental realization of sub-shot-noise quantum imaging [J].
Brida, G. ;
Genovese, M. ;
Berchera, I. Ruo .
NATURE PHOTONICS, 2010, 4 (04) :227-230
[5]   Bose-Einstein condensation of metastable helium in a bi-planar quadrupole Ioffe configuration trap [J].
Dall, R. G. ;
Truscott, A. G. .
OPTICS COMMUNICATIONS, 2007, 270 (02) :255-261
[6]  
Dall RG, 2013, NAT PHYS, V9, P341, DOI [10.1038/NPHYS2632, 10.1038/nphys2632]
[7]   Ghost imaging: from quantum to classical to computational [J].
Erkmen, Baris I. ;
Shapiro, Jeffrey H. .
ADVANCES IN OPTICS AND PHOTONICS, 2010, 2 (04) :405-450
[8]   High-resolution ghost image and ghost diffraction experiments with thermal light [J].
Ferri, F ;
Magatti, D ;
Gatti, A ;
Bache, M ;
Brambilla, E ;
Lugiato, LA .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[9]   DIFFRACTION OF ATOMS BY LIGHT - THE NEAR-RESONANT KAPITZA-DIRAC EFFECT [J].
GOULD, PL ;
RUFF, GA ;
PRITCHARD, DE .
PHYSICAL REVIEW LETTERS, 1986, 56 (08) :827-830
[10]   Computational ghost imaging versus imaging laser radar for three-dimensional imaging [J].
Hardy, Nicholas D. ;
Shapiro, Jeffrey H. .
PHYSICAL REVIEW A, 2013, 87 (02)