Adaptive multiple subtraction with wavelet-based complex unary Wiener filters

被引:2
作者
Ventosa, Sergi [1 ]
Le Roy, Sylvain [2 ]
Huard, Irene [2 ]
Pica, Antonio [2 ]
Rabeson, Herald [1 ]
Ricarte, Patrice [1 ]
Duval, Laurent [1 ]
机构
[1] IFP Energies Nouvelles, Rueil Malmaison, France
[2] CGGVeritas, Massy, France
关键词
INDEPENDENT COMPONENT ANALYSIS; REMOVAL; SUPPRESSION; TRANSFORM; DECONVOLUTION; ELIMINATION; ATTENUATION; SCATTERING; INVERSION;
D O I
10.1190/GEO2011-0318.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Adaptive subtraction is a key element in predictive multiple-suppression methods. It minimizes misalignments and amplitude differences between modeled and actual multiples, and thus reduces multiple contamination in the data set after subtraction. Due to the high crosscorrelation between their waveforms, the main challenge resides in attenuating multiples without distorting primaries. As they overlap on a wide frequency range, we split this wide-band problem into a set of more tractable narrow-band filter designs, using a ID complex wavelet frame. This decomposition enables a single-pass adaptive subtraction via complex, single-sample (unary) Wiener filters, consistently estimated on overlapping windows in a complex wavelet transformed domain. Each unary filter compensates for amplitude differences within its frequency support, and can correct small and large misalignment errors through phase and integer delay corrections. This approach greatly simplifies the matching filter estimation and, despite its simplicity, narrows the gap between ID and standard adaptive 2D methods on field data.
引用
收藏
页码:V183 / V192
页数:10
相关论文
共 51 条
[1]  
Abma R., 2005, LEADING EDGE, V03, P277, DOI DOI 10.1190/1.1895312
[2]  
Ahmed I., 2007, 77 ANN INT M SEG, P2490
[3]   Multidimensional signature deconvolution and free-surface multiple elimination of marine multicomponent ocean-bottom seismic [J].
Amundsen, L ;
Ikelle, LT ;
Berg, LE .
GEOPHYSICS, 2001, 66 (05) :1594-1604
[4]   Focal transformation, an imaging concept for signal restoration and noise removal [J].
Berkhout, A. J. ;
Verschuur, D. J. .
GEOPHYSICS, 2006, 71 (06) :A55-A59
[5]  
Buttkus B., 1975, Geophysical Prospecting, V23, P712, DOI 10.1111/j.1365-2478.1975.tb01555.x
[6]   Noise covariance properties in dual-tree wavelet decompositions [J].
Chaux, Caroline ;
Pesquet, Jean-Christophe ;
Duval, Laurent .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) :4680-4700
[7]   Seismic imaging with the generalized Radon transform: a curvelet transform perspective [J].
de Hoop, M. V. ;
Smith, H. ;
Uhlmann, G. ;
van der Hilst, R. D. .
INVERSE PROBLEMS, 2009, 25 (02)
[8]  
Donno D, 2011, GEOPHYSICS, V76, pV91, DOI [10.1190/GEO2010-0332.1, 10.1190/geo2010-0332.1]
[9]   Curvelet-based multiple prediction [J].
Donno, Daniela ;
Chauris, Herve ;
Noble, Mark .
GEOPHYSICS, 2010, 75 (06) :WB255-WB263
[10]   A perspective on 3D surface-related multiple elimination [J].
Dragoset, Bill ;
Verschuur, Eric ;
Moore, Ian ;
Bisley, Richard .
GEOPHYSICS, 2010, 75 (05) :A245-A261