Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean

被引:72
|
作者
Moore, Andrew M. [1 ]
Martini, Matthew J. [2 ]
Akella, Santha [3 ]
Arango, Hernan G. [4 ]
Balmaseda, Magdalena [5 ]
Bertino, Laurent [6 ]
Ciavatta, Stefano [7 ]
Cornuelle, Bruce [8 ]
Cummings, Jim [9 ]
Frolov, Sergey [10 ]
Lermusiaux, Pierre [11 ]
Oddo, Paolo [12 ]
Oke, Peter R. [13 ]
Storto, Andrea [12 ]
Teruzzi, Anna [14 ]
Vidard, Arthur [15 ]
Weaver, Anthony T. [16 ]
机构
[1] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA
[2] Met Off, Exeter, Devon, England
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Rutgers State Univ, Dept Marine & Coastal Sci, New Brunswick, NJ USA
[5] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[6] Nansen Environm & Remote Sensing Ctr, Bergen, Norway
[7] Natl Ctr Earth Observat, Plymouth Marine Lab, Plymouth, Devon, England
[8] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA
[9] NOAA, IMSG, NCEP, College Pk, MD USA
[10] Naval Res Lab, Monterey, CA USA
[11] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[12] Ctr Maritime Res & Expt, La Spezia, Italy
[13] CSIRO, Hobart, Tas, Australia
[14] Ist Nazl Oceanog & Geofis Sperimentale, Trieste, Italy
[15] Univ Grenoble Alpes, Inria, Grenoble, France
[16] Ctr Europeen Rech & Format Avancee Calcul Sci, Toulouse, France
关键词
data assimilation; calculus of variations; Kalman filters; ensembles; modeling; HYBRID; SCHEME; IMPLEMENTATION; IMPACT; FILTER; ERROR; MODEL; BIAS;
D O I
10.3389/fmars.2019.00090
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ocean data assimilation is increasingly recognized as crucial for the accuracy of real-time ocean prediction systems and historical re-analyses. The current status of ocean data assimilation in support of the operational demands of analysis, forecasting and reanalysis is reviewed, focusing on methods currently adopted in operational and real-time prediction systems. Significant challenges associated with the most commonly employed approaches are identified and discussed. Overarching issues faced by ocean data assimilation are also addressed, and important future directions in response to scientific advances, evolving and forthcoming ocean observing systems and the needs of stakeholders and downstream applications are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Ocean State Forecast along Ship Routes: Evaluation Using ESSO-INCOIS Real-Time Ship-Mounted Wave Height Meter and Satellite Observations
    Harikumar, R.
    Hithin, N. K.
    Nair, T. M. Balakrishnan
    Sirisha, P.
    Prasad, B. Krishna
    Jeyakumar, C.
    Nayak, Shailesh
    Shenoi, S. S. C.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (11) : 2211 - 2222
  • [32] A robust surrogate data assimilation approach to real-time forecasting using polynomial chaos expansion
    Vinh Ngoc Tran
    Kim, Jongho
    JOURNAL OF HYDROLOGY, 2021, 598
  • [33] Real-time flood forecast using the coupling support vector machine and data assimilation method
    Li, Xiao-Li
    Lu, Haishen
    Horton, Robert
    An, Tianqing
    Yu, Zhongbo
    JOURNAL OF HYDROINFORMATICS, 2014, 16 (05) : 973 - 988
  • [34] Addressing errors in automated sensor data for real-time traffic state estimation using dynamical systems approach
    Fulari, Shrikant G.
    Vanajakshi, Lelitha
    Subramanian, Shankar C.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (10) : 683 - 690
  • [35] Enable high-resolution, real-time ensemble simulation and data assimilation of flood inundation using distributed GPU parallelization
    Wei, Junyu
    Luo, Xiangyu
    Huang, Haocheng
    Liao, Weihong
    Lei, Xiaohui
    Zhao, Jianshi
    Wang, Hao
    JOURNAL OF HYDROLOGY, 2023, 619
  • [36] Hydrological data assimilation with the Ensemble Square-Root-Filter: Use of streamflow observations to update model states for real-time flash flood forecasting
    Chen, He
    Yang, Dawen
    Hong, Yang
    Gourley, Jonathan J.
    Zhang, Yu
    ADVANCES IN WATER RESOURCES, 2013, 59 : 209 - 220
  • [37] Aerosol data assimilation and forecast using Geostationary Ocean Color Imager aerosol optical depth and in-situ observations during the KORUS-AQ observing period
    Kim, Ganghan
    Lee, Seunghee
    Im, Jungho
    Song, Chang-Keun
    Kim, Jhoon
    Lee, Myong-in
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1175 - 1194
  • [38] Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of streamflow data into operational hydrologic models
    Rafieeinasab, Arezoo
    Seo, Dong-Jun
    Lee, Haksu
    Kim, Sunghee
    JOURNAL OF HYDROLOGY, 2014, 519 : 2663 - 2675
  • [39] Real-Time Observations of the February 2010 Chile and March 2011 Japan Tsunamis Recorded in Honolulu by the Pacific Islands Ocean Observing System
    Fiedler, Julia W.
    McManus, Margaret A.
    Tomlinson, Michael S.
    De Carlo, Eric H.
    Pawlak, Geno R.
    Steward, Grieg F.
    Nigro, Olivia D.
    Timmerman, Ross E.
    Drupp, Patrick S.
    Ostrander, Chris E.
    OCEANOGRAPHY, 2014, 27 (02) : 186 - 200
  • [40] Real-time Wave-Prediction Method at Arbitrary Locations Using Data Assimilation and Convolutional Neural Networks
    Ozaki, Shinichiro
    Ide, Yoshihiko
    Yamashiro, Masaru
    Kodama, Mitsuyoshi
    Kotoura, Tsuyoshi
    Hashimoto, Noriaki
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2023, 33 (04) : 388 - 398