A novel on-chip diagnostic method has been developed to measure burn rates of energetic materials patterned on a 1 inch x 3 inch glass chip. The method is based on time-varying resistance (TVR) of a sputter-coated thin platinum (Pt) film, in which resistance of the film changes because of the propagation of ignition of the nanoenergetic material over it. The corresponding voltage differential is captured by a high-speed data acquisition system (1.25 x 10(6) samples/s). We have measured burn rates as high as 504 m/s for thermites of copper oxide (CuO)/aluminum (Al) and 155 m/s for bismuth oxide (Bi2O3)/Al nanoparticles using this method. We have provided an explanation for the change of resistance upon ignition, based on the microstructural characterization and energy dispersive spectroscopy.