A minimax optimal control strategy for partially observable uncertain quasi-Hamiltonian systems

被引:2
作者
Feng, J. [1 ]
Ying, Z. G. [1 ]
Zhu, W. Q. [1 ]
机构
[1] Zhejiang Univ, Dept Mech, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Peoples R China
关键词
Partial observation; Minimax optimal control; Quasi-Hamiltonian system; Uncertain disturbance; Stochastic averaging; Stochastic differential game; STOCHASTIC OPTIMAL-CONTROL;
D O I
10.1016/j.ijnonlinmec.2011.09.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A stochastic minimax optimal control strategy for partially observable uncertain quasi-Hamiltonian systems is proposed. First, the stochastic optimal control problem of a partially observable nonlinear uncertain quasi-Hamiltonian system is converted into that of a completely observable linear uncertain system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by a minimax optimal control strategy based on stochastic averaging method and stochastic differential game. The worst-case disturbances and the optimal controls are obtained by solving a Hamilton-Jacobi-Isaacs (HJI) equation. As an example, the stochastic minimax optimal control of a partially observable Duffing-van der Pol oscillator with uncertain disturbances is worked out in detail to illustrate the procedure and effectiveness of the proposed control strategy. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1147 / 1153
页数:7
相关论文
共 19 条
[1]  
Bensoussan A., 1999, STOCHASTIC CONTROL P
[2]   Classes of nonlinear partially observable stochastic optimal control problems with explicit optimal control laws [J].
Charalambous, CD ;
Elliott, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (02) :542-578
[3]   Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems [J].
Feng Ju ;
Zhu WeiQiu ;
Ying ZuGuang .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 (01) :147-154
[4]  
Fleming W. H., 2012, Deterministic and Stochastic Optimal Control
[5]   Structural control: Past, present, and future [J].
Housner, GW ;
Bergman, LA ;
Caughey, TK ;
Chassiakos, AG ;
Claus, RO ;
Masri, SF ;
Skelton, RE ;
Soong, TT ;
Spencer, BF ;
Yao, JTP .
JOURNAL OF ENGINEERING MECHANICS, 1997, 123 (09) :897-971
[6]   Filtering and stochastic control: A historical perspective [J].
Mitter, SK .
IEEE CONTROL SYSTEMS MAGAZINE, 1996, 16 (03) :67-76
[7]  
Petersen I. R., 2000, COMM CONT E
[8]   MINIMAX OPTIMAL-CONTROL OF UNCERTAIN SYSTEMS WITH STRUCTURED UNCERTAINTY [J].
SAVKIN, AV ;
PETERSEN, IR .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1995, 5 (02) :119-137
[9]   Absolute stabilization and minimax optimal control of uncertain systems with stochastic uncertainty [J].
Ugrinovskii, VA ;
Petersen, IR .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1089-1122
[10]   A minimax optimal control strategy for uncertain quasi-Hamiltonian systems [J].
Wang, Yong ;
Ying, Zu-guang ;
Zhu, Wei-qiu .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (07) :950-954