On the motion of a curve by its binormal curvature

被引:52
作者
Jerrard, Robert L. [1 ]
Smets, Didier [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris 05, France
关键词
Binormal curvature flow; integral current; oriented varifold; VORTEX FILAMENT; RECONNECTION; EQUATIONS; DYNAMICS;
D O I
10.4171/JEMS/536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a weak formulation for the binormal curvature flow of curves in R-3. This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.
引用
收藏
页码:1487 / 1515
页数:29
相关论文
共 29 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]  
Almgren F. J., 1964, THEORY VARIFOLDS CAL
[3]  
[Anonymous], MEM AM MATH SOC
[4]   On the Stability of a Singular Vortex Dynamics [J].
Banica, V. ;
Vega, L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (02) :593-627
[5]   Scattering for 1D cubic NLS and singular vortex dynamics [J].
Banica, Valeria ;
Vega, Luis .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (01) :209-253
[6]  
Brakke K., 1978, MOTION SURFACE ITS M
[7]   Weak-Strong Uniqueness for Measure-Valued Solutions [J].
Brenier, Yann ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (02) :351-361
[8]  
Buttke T. F., 1986, THESIS U CALIF
[9]  
Da Rios L. S., 1910, REND CIRC MAT PALERM, V29, P354
[10]  
Da Rios LS., 1906, REND CIRC MAT PALERM, V22, P117, DOI DOI 10.1007/BF03018608