Short two-variable identities for finite groups

被引:2
|
作者
Cargo, David P. [1 ]
de Launey, Warwick [2 ]
Liebeck, Martin W. [3 ]
Stafford, Richard M. [1 ]
机构
[1] US Dept Def, Ft George G Meade, MD 20755 USA
[2] Ctr Commun Res, La Jolla, CA 92121 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
D O I
10.1515/JGT.2008.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider finite groups G satisfying identities of the form x(e1)y(f1)x(e2)y(f2) ... x(er)y(fr) =1. We focus on identities with r small, Sigma(i) e(i) = Sigma(i) f(i) = 0, and all e(i), f(i) coprime to the order of G. We show that for r = 2, 3 and 5, G must be nilpotent. We also classify for r = 4, 6 and 7, the special identities which can hold in non-nilpotent groups. Finally, we show that for r < 30. the group G must be solvable.
引用
收藏
页码:675 / 690
页数:16
相关论文
共 50 条
  • [41] A two-variable series for knot complements
    Gukov, Sergei
    Manolescu, Ciprian
    QUANTUM TOPOLOGY, 2021, 12 (01) : 1 - 109
  • [42] A note on the two-variable expansion method
    Hu, H.
    Zheng, M. Y.
    ACTA MECHANICA, 2011, 216 (1-4) : 351 - 357
  • [43] A note on a family of two-variable polynomials
    Aktas, Rabia
    Altin, Abdullah
    Tasdelen, Fatma
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4825 - 4833
  • [44] Combinatorics of the two-variable zeta function
    Duursma, IM
    FINITE FIELDS AND APPLICATIONS, 2004, 2948 : 109 - 136
  • [45] Two-variable linear programming in parallel
    Chen, DZ
    Xu, JH
    ALGORITHM THEORY - SWAT'98, 1998, 1432 : 169 - 180
  • [46] A note on the two-variable expansion method
    H. Hu
    M. Y. Zheng
    Acta Mechanica, 2011, 216 : 351 - 357
  • [47] Two-Variable Logic on Data Words
    Bojanczyk, Mikolaj
    David, Claire
    Muscholl, Anca
    Schwentick, Thomas
    Segoufin, Luc
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2011, 12 (04)
  • [48] On preservation theorems for two-variable logic
    Grädel, E
    Rosen, E
    MATHEMATICAL LOGIC QUARTERLY, 1999, 45 (03) : 315 - 325
  • [49] Generic two-variable model of excitability
    Ventura, A.C.
    Mindlin, G.B.
    Dawson, S. Ponce
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04): : 1 - 046231
  • [50] A note on a family of two-variable polynomials
    Ankara University, Faculty of Science, Department of Mathematics, Tandoan TR-06100, Ankara, Turkey
    J. Comput. Appl. Math., 1600, 16 (4825-4833):