A low-rank approach to the solution of weak constraint variational data assimilation problems

被引:11
|
作者
Freitag, Melina A. [1 ]
Green, Daniel L. H. [1 ]
机构
[1] Univ Bath, Dept Math Sci, Claverton Down BA2 7AY, England
基金
英国工程与自然科学研究理事会;
关键词
Data assimilation; Weak constraint 4D-Var; Iterative methods; Matrix equations; Low-rank methods; Preconditioning; LINEAR-SYSTEMS; LYAPUNOV EQUATIONS; NUMERICAL-SOLUTION;
D O I
10.1016/j.jcp.2017.12.039
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Weak constraint four-dimensional variational data assimilation is an important method for incorporating data (typically observations) into a model. The linearised system arising within the minimisation process can be formulated as a saddle point problem. A disadvantage of this formulation is the large storage requirements involved in the linear system. In this paper, we present a low-rank approach which exploits the structure of the saddle point system using techniques and theory from solving large scale matrix equations. Numerical experiments with the linear advection-diffusion equation, and the non-linear Lorenz-95 model demonstrate the effectiveness of a low-rank Krylov subspace solver when compared to a traditional solver. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 281
页数:19
相关论文
共 50 条
  • [1] A LOW-RANK IN TIME APPROACH TO PDE-CONSTRAINED OPTIMIZATION
    Stoll, Martin
    Breiten, Tobias
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) : B1 - B29
  • [2] LOW-RANK SOLUTION TO AN OPTIMIZATION PROBLEM CONSTRAINED BY THE NAVIER STOKES EQUATIONS
    Dolgov, Sergey
    Stoll, Martin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01) : A255 - A280
  • [3] Solvability and numerical solution of variational data assimilation problems
    Shutyaev, V
    SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 191 - 201
  • [4] Low-Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients
    Benner, Peter
    Onwunta, Akwum
    Stoll, Martin
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 622 - 649
  • [5] Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems
    Debreu, Laurent
    Neveu, Emilie
    Simon, Ehouarn
    Le Dimet, Francois-Xavier
    Vidard, Arthur
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (694) : 515 - 528
  • [6] Variational data assimilation for Hamiltonian problems
    Watkinson, LR
    Lawless, AS
    Nichols, NK
    Roulstone, I
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) : 1361 - 1367
  • [7] ADAPTIVE LOW-RANK METHODS: PROBLEMS ON SOBOLEV SPACES
    Bachmayr, Markus
    Dahmen, Wolfgang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 744 - 796
  • [8] Efficient low-rank solution of generalized Lyapunov equations
    Shank, Stephen D.
    Simoncini, Valeria
    Szyld, Daniel B.
    NUMERISCHE MATHEMATIK, 2016, 134 (02) : 327 - 342
  • [9] A Constraint Method for Supersaturation in a Variational Data Assimilation System
    Sawada, Ken
    Honda, Yuki
    MONTHLY WEATHER REVIEW, 2021, 149 (11) : 3707 - 3724
  • [10] A Scalable Approach for Variational Data Assimilation
    D'Amore, Luisa
    Arcucci, Rossella
    Carracciuolo, Luisa
    Murli, Almerico
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (02) : 239 - 257