Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems

被引:133
作者
Li, P [1 ]
Kadirkamanathan, V [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S10 2TN, S Yorkshire, England
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS | 2001年 / 31卷 / 03期
关键词
extended Kalman filter (EKF); fault diagnosis; likelihood ratio (LR) test; Monte-Carlo technique; nonlinear stochastic system; particle filter (PF);
D O I
10.1109/5326.971661
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the development of a particle filtering (PF) based method for fault detection and isolation (FDI) in stochastic nonlinear dynamic systems. The FDI problem is formulated in the multiple model (MM) environment, then by combining the likelihood ratio (LR) test with the PF, a new FDI scheme is developed. The simulation results on a highly nonlinear system are provided which demonstrate the effectiveness of the proposed method.
引用
收藏
页码:337 / 343
页数:7
相关论文
共 32 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]  
[Anonymous], EUROPEAN J CONTROL
[3]  
[Anonymous], BAYESIAN ANAL TIME S
[4]   DETECTING CHANGES IN SIGNALS AND SYSTEMS - A SURVEY [J].
BASSEVILLE, M .
AUTOMATICA, 1988, 24 (03) :309-326
[5]  
Basseville M., 1993, DETECTION ABRUPT CHA
[6]  
BASSEVILLE M, 1997, P IFAC SYST ID FUK J, P413
[7]  
BASSEVILLE M, 1985, LECT NOTES CONTROL, V77
[8]   Monte Carlo filters for non-linear state estimation [J].
Bolviken, E ;
Acklam, PJ ;
Christophersen, N ;
Stordal, JM .
AUTOMATICA, 2001, 37 (02) :177-183
[9]  
CHIEN TT, 1976, IEEE T AUTOMAT CONTR, V21, P750, DOI 10.1109/TAC.1976.1101363
[10]   On sequential Monte Carlo sampling methods for Bayesian filtering [J].
Doucet, A ;
Godsill, S ;
Andrieu, C .
STATISTICS AND COMPUTING, 2000, 10 (03) :197-208